Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs)
Carole Peyssonnaux, … , Victor Nizet, Randall S. Johnson
Carole Peyssonnaux, … , Victor Nizet, Randall S. Johnson
Published July 2, 2007
Citation Information: J Clin Invest. 2007;117(7):1926-1932. https://doi.org/10.1172/JCI31370.
View: Text | PDF
Research Article

Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs)

  • Text
  • PDF
Abstract

Iron is essential for many biological processes, including oxygen delivery, and its supply is tightly regulated. Hepcidin, a small peptide synthesized in the liver, is a key regulator of iron absorption and homeostasis in mammals. Hepcidin production is increased by iron overload and decreased by anemia and hypoxia; but the molecular mechanisms that govern the hepcidin response to these stimuli are not known. Here we establish that the von Hippel–Lindau/hypoxia-inducible transcription factor (VHL/HIF) pathway is an essential link between iron homeostasis and hepcidin regulation in vivo. Through coordinate downregulation of hepcidin and upregulation of erythropoietin and ferroportin, the VHL-HIF pathway mobilizes iron to support erythrocyte production.

Authors

Carole Peyssonnaux, Annelies S. Zinkernagel, Reto A. Schuepbach, Erinn Rankin, Sophie Vaulont, Volker H. Haase, Victor Nizet, Randall S. Johnson

×

Figure 1

Iron deficiency downregulates hepcidin in an HIF-1–dependent fashion.

Options: View larger image (or click on image) Download as PowerPoint
Iron deficiency downregulates hepcidin in an HIF-1–dependent fashion.
  ...
(A) Hepcidin mRNA level in livers of WT mice under regular or low-iron diet (3 weeks), determined by real-time RT-PCR. Results, normalized to 18S ribosomal RNA expression, are expressed as mean ± SD (n = 5 in each group). (B) HIF-1 expression in liver extracts of iron-starved WT mice by Western blotting. (C) Hepcidin mRNA expression in livers of WT and Albumin-Cre/HIF-1αflox/flox (HIF-1–/–) iron-starved mice by real-time RT-PCR (n = 8).

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts