Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Priming and effector dependence on insulin B:9–23 peptide in NOD islet autoimmunity
Maki Nakayama, Joshua N. Beilke, Jean M. Jasinski, Masakazu Kobayashi, Dongmei Miao, Marcella Li, Marilyne G. Coulombe, Edwin Liu, John F. Elliott, Ronald G. Gill, George S. Eisenbarth
Maki Nakayama, Joshua N. Beilke, Jean M. Jasinski, Masakazu Kobayashi, Dongmei Miao, Marcella Li, Marilyne G. Coulombe, Edwin Liu, John F. Elliott, Ronald G. Gill, George S. Eisenbarth
View: Text | PDF
Research Article Immunology

Priming and effector dependence on insulin B:9–23 peptide in NOD islet autoimmunity

  • Text
  • PDF
Abstract

NOD mice with knockout of both native insulin genes and a mutated proinsulin transgene, alanine at position B16 in preproinsulin (B16:A-dKO mice), do not develop diabetes. Transplantation of NOD islets, but not bone marrow, expressing native insulin sequences (tyrosine at position B16) into B16:A-dKO mice rapidly restored development of insulin autoantibodies (IAAs) and insulitis, despite the recipients’ pancreatic islets lacking native insulin sequences. Splenocytes from B16:A-dKO mice that received native insulin–positive islets induced diabetes when transferred into wild-type NOD/SCID or B16:A-dKO NOD/SCID mice. Splenocytes from mice immunized with native insulin B chain amino acids 9–23 (insulin B:9–23) peptide in CFA induced rapid diabetes upon transfer only in recipients expressing the native insulin B:9–23 sequence in their pancreata. Additionally, CD4+ T cells from B16:A-dKO mice immunized with native insulin B:9–23 peptide promoted IAAs in NOD/SCID mice. These results indicate that the provision of native insulin B:9–23 sequences is sufficient to prime anti-insulin autoimmunity and that subsequent transfer of diabetes following peptide immunization requires native insulin B:9–23 expression in islets. Our findings demonstrate dependence on B16 alanine versus tyrosine of insulin B:9–23 for both the initial priming and the effector phase of NOD anti-islet autoimmunity.

Authors

Maki Nakayama, Joshua N. Beilke, Jean M. Jasinski, Masakazu Kobayashi, Dongmei Miao, Marcella Li, Marilyne G. Coulombe, Edwin Liu, John F. Elliott, Ronald G. Gill, George S. Eisenbarth

×

Figure 10

Provision of the native B16:Y insulin B:9–23 sequence by transgenesis induces IAAs and insulitis.

Options: View larger image (or click on image) Download as PowerPoint
Provision of the native B16:Y insulin B:9–23 sequence by transgenesis in...
(A) B16:A-dKO and B16:Y-dKO mice were measured for the development of IAAs every 2–3 weeks between 4 and 30 weeks of age. Each symbol represents the peak level of mIAA index for individual mice. B16:Y-dKO mice developed IAAs (P < 0.01 versus B16:A-dKO). (B) Insulitis scoring of B16:A-dKO mice, B16:Y-dKO mice, and wild-type NOD mice between 10 and 22 weeks of age. B16:Y-dKO mice developed insulitis significantly more severe than did B16:A-dKO mice (P < 0.01) and as severely as did wild-type NOD mice. (C and D) Pancreatic histology (H&E; original magnification, ×100) of B16:A-dKO (C) and B16:Y-dKO (D) mice.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts