Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Priming and effector dependence on insulin B:9–23 peptide in NOD islet autoimmunity
Maki Nakayama, … , Ronald G. Gill, George S. Eisenbarth
Maki Nakayama, … , Ronald G. Gill, George S. Eisenbarth
Published July 2, 2007
Citation Information: J Clin Invest. 2007;117(7):1835-1843. https://doi.org/10.1172/JCI31368.
View: Text | PDF
Research Article Immunology

Priming and effector dependence on insulin B:9–23 peptide in NOD islet autoimmunity

  • Text
  • PDF
Abstract

NOD mice with knockout of both native insulin genes and a mutated proinsulin transgene, alanine at position B16 in preproinsulin (B16:A-dKO mice), do not develop diabetes. Transplantation of NOD islets, but not bone marrow, expressing native insulin sequences (tyrosine at position B16) into B16:A-dKO mice rapidly restored development of insulin autoantibodies (IAAs) and insulitis, despite the recipients’ pancreatic islets lacking native insulin sequences. Splenocytes from B16:A-dKO mice that received native insulin–positive islets induced diabetes when transferred into wild-type NOD/SCID or B16:A-dKO NOD/SCID mice. Splenocytes from mice immunized with native insulin B chain amino acids 9–23 (insulin B:9–23) peptide in CFA induced rapid diabetes upon transfer only in recipients expressing the native insulin B:9–23 sequence in their pancreata. Additionally, CD4+ T cells from B16:A-dKO mice immunized with native insulin B:9–23 peptide promoted IAAs in NOD/SCID mice. These results indicate that the provision of native insulin B:9–23 sequences is sufficient to prime anti-insulin autoimmunity and that subsequent transfer of diabetes following peptide immunization requires native insulin B:9–23 expression in islets. Our findings demonstrate dependence on B16 alanine versus tyrosine of insulin B:9–23 for both the initial priming and the effector phase of NOD anti-islet autoimmunity.

Authors

Maki Nakayama, Joshua N. Beilke, Jean M. Jasinski, Masakazu Kobayashi, Dongmei Miao, Marcella Li, Marilyne G. Coulombe, Edwin Liu, John F. Elliott, Ronald G. Gill, George S. Eisenbarth

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts