Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Fanconi anemia pathway–deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated
Richard D. Kennedy, Clark C. Chen, Patricia Stuckert, Elyse M. Archila, Michelle A. De la Vega, Lisa A. Moreau, Akiko Shimamura, Alan D. D’Andrea
Richard D. Kennedy, Clark C. Chen, Patricia Stuckert, Elyse M. Archila, Michelle A. De la Vega, Lisa A. Moreau, Akiko Shimamura, Alan D. D’Andrea
View: Text | PDF
Research Article Oncology

Fanconi anemia pathway–deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated

  • Text
  • PDF
Abstract

The Fanconi anemia (FA) pathway maintains genomic stability in replicating cells. Some sporadic breast, ovarian, pancreatic, and hematological tumors are deficient in FA pathway function, resulting in sensitivity to DNA-damaging agents. FA pathway dysfunction in these tumors may result in hyperdependence on alternative DNA repair pathways that could be targeted as a treatment strategy. We used a high-throughput siRNA screening approach that identified ataxia telangiectasia mutated (ATM) as a critical kinase for FA pathway–deficient human fibroblasts. Human fibroblasts and murine embryonic fibroblasts deficient for the FA pathway were observed to have constitutive ATM activation and Fancg–/–Atm–/– mice were found to be nonviable. Abrogation of ATM function in FA pathway–deficient cells resulted in DNA breakage, cell cycle arrest, and apoptotic cell death. Moreover, Fanconi anemia complementation group G– (FANCG-) and FANCC-deficient pancreatic tumor lines were more sensitive to the ATM inhibitor KU-55933 than isogenic corrected lines. These data suggest that ATM and FA genes function in parallel and compensatory roles to maintain genomic integrity and cell viability. Pharmaceutical inhibition of ATM may have a role in the treatment of FA pathway–deficient human cancers.

Authors

Richard D. Kennedy, Clark C. Chen, Patricia Stuckert, Elyse M. Archila, Michelle A. De la Vega, Lisa A. Moreau, Akiko Shimamura, Alan D. D’Andrea

×

Loading citation information...
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts