Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Indoleamine 2,3-dioxygenase and tumor-induced tolerance
David H. Munn, Andrew L. Mellor
David H. Munn, Andrew L. Mellor
Published May 1, 2007
Citation Information: J Clin Invest. 2007;117(5):1147-1154. https://doi.org/10.1172/JCI31178.
View: Text | PDF
Review Series

Indoleamine 2,3-dioxygenase and tumor-induced tolerance

  • Text
  • PDF
Abstract

Tumors arise from normal cells of the body through genetic mutation. Although such genetic mutation often leads to the expression of abnormal antigens, the immune system fails to respond effectively to these antigens; that is, it is tolerant of these antigens. This acquired state of tolerance must be overcome for cancer immunotherapy to succeed. Indoleamine 2,3-dioxygenase (IDO) is one molecular mechanism that contributes to tumor-induced tolerance. IDO helps create a tolerogenic milieu in the tumor and the tumor-draining lymph nodes, both by direct suppression of T cells and enhancement of local Treg-mediated immunosuppression. It can also function as an antagonist to other activators of antitumor immunity. Therefore, strategies to block IDO might enhance the effectiveness of tumor immunotherapy.

Authors

David H. Munn, Andrew L. Mellor

×

Figure 1

Molecular mechanisms of IDO-induced immunosuppression.

Options: View larger image (or click on image) Download as PowerPoint
Molecular mechanisms of IDO-induced immunosuppression.
(A) IDO catalyzes...
(A) IDO catalyzes the initial and rate-limiting step in the degradation of tryptophan along the kynurenine pathway. Tryptophan metabolites have been shown to have immunomodulatory activity, alone or in combination with the GCN2 signaling pathway. (B) IDO enzymatic activity results in the local depletion of tryptophan and a local increase in the concentration of downstream metabolites. The decrease in tryptophan can cause a rise in the level of uncharged transfer RNA (tRNA) in neighboring T cells, resulting in activation of the amino acid–sensitive GCN2 stress-kinase pathway. In turn, GCN2 signaling can cause cell cycle arrest and anergy induction in responding T cells. The local increase in tryptophan metabolites can cause cell cycle arrest, apoptosis, and (in conjunction with GCN2 signaling) differentiation of new Tregs from uncommitted CD4+ T cells.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts