Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury
Renzhi Han, Dimple Bansal, Katsuya Miyake, Viviane P. Muniz, Robert M. Weiss, Paul L. McNeil, Kevin P. Campbell
Renzhi Han, Dimple Bansal, Katsuya Miyake, Viviane P. Muniz, Robert M. Weiss, Paul L. McNeil, Kevin P. Campbell
View: Text | PDF
Research Article

Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury

  • Text
  • PDF
Abstract

Dilated cardiomyopathy is a life-threatening syndrome that can arise from a myriad of causes, but predisposition toward this malady is inherited in many cases. A number of inherited forms of dilated cardiomyopathy arise from mutations in genes that encode proteins involved in linking the cytoskeleton to the extracellular matrix, and disruption of this link renders the cell membrane more susceptible to injury. Membrane repair is an important cellular mechanism that animal cells have developed to survive membrane disruption. We have previously shown that dysferlin deficiency leads to defective membrane resealing in skeletal muscle and muscle necrosis; however, the function of dysferlin in the heart remains to be determined. Here, we demonstrate that dysferlin is also involved in cardiomyocyte membrane repair and that dysferlin deficiency leads to cardiomyopathy. In particular, stress exercise disturbs left ventricular function in dysferlin-null mice and increases Evans blue dye uptake in dysferlin-deficient cardiomyocytes. Furthermore, a combined deficiency of dystrophin and dysferlin leads to early onset cardiomyopathy. Our results suggest that dysferlin-mediated membrane repair is important for maintaining membrane integrity of cardiomyocytes, particularly under conditions of mechanical stress. Thus, our study establishes what we believe is a novel mechanism underlying the cardiomyopathy that results from a defective membrane repair in the absence of dysferlin.

Authors

Renzhi Han, Dimple Bansal, Katsuya Miyake, Viviane P. Muniz, Robert M. Weiss, Paul L. McNeil, Kevin P. Campbell

×

Figure 4

Effect of stress exercise on echocardiography and cardiac uptake of EBD in dysferlin-null mice.

Options: View larger image (or click on image) Download as PowerPoint
Effect of stress exercise on echocardiography and cardiac uptake of EBD ...
Stress exercise significantly decreased heart rate (A) and increased end-systolic volume (ESV) (B) in dysferlin-null mice. End-diastolic volume (EDV) (C) also tended to increase in response to stress exercise in dysferlin-null mice while ejection fraction (EF) (D) decreased in these animals. n = 6 for control and n = 9 for dysferlin-null mice. (E) H&E (bottom panel) and EBD uptake analysis (top panel) showed individual cardiac muscle fiber necrosis and EBD uptake (marked by asterisks) in heart sections of 24-week-old dysferlin-null mice following stress exercise. Scale bar: 100 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts