Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A cardiac myosin light chain kinase regulates sarcomere assembly in the vertebrate heart
Osamu Seguchi, Seiji Takashima, Satoru Yamazaki, Masanori Asakura,, Yoshihiro Asano, Yasunori Shintani, Masakatsu Wakeno, Tetsuo Minamino, Hiroya Kondo, Hidehiko Furukawa, Kenji Nakamaru, Asuka Naito,, Tomoko Takahashi, Toshiaki Ohtsuka, Koichi Kawakami, Tadashi Isomura,, Soichiro Kitamura, Hitonobu Tomoike, Naoki Mochizuki, Masafumi Kitakaze
Osamu Seguchi, Seiji Takashima, Satoru Yamazaki, Masanori Asakura,, Yoshihiro Asano, Yasunori Shintani, Masakatsu Wakeno, Tetsuo Minamino, Hiroya Kondo, Hidehiko Furukawa, Kenji Nakamaru, Asuka Naito,, Tomoko Takahashi, Toshiaki Ohtsuka, Koichi Kawakami, Tadashi Isomura,, Soichiro Kitamura, Hitonobu Tomoike, Naoki Mochizuki, Masafumi Kitakaze
View: Text | PDF
Research Article Cardiology

A cardiac myosin light chain kinase regulates sarcomere assembly in the vertebrate heart

  • Text
  • PDF
Abstract

Marked sarcomere disorganization is a well-documented characteristic of cardiomyocytes in the failing human myocardium. Myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v), which is involved in the development of human cardiomyopathy, is an important structural protein that affects physiologic cardiac sarcomere formation and heart development. Integrated cDNA expression analysis of failing human myocardia uncovered a novel protein kinase, cardiac-specific myosin light chain kinase (cardiac-MLCK), which acts on MLC2v. Expression levels of cardiac-MLCK were well correlated with the pulmonary arterial pressure of patients with heart failure. In cultured cardiomyocytes, knockdown of cardiac-MLCK by specific siRNAs decreased MLC2v phosphorylation and impaired epinephrine-induced activation of sarcomere reassembly. To further clarify the physiologic roles of cardiac-MLCK in vivo, we cloned the zebrafish ortholog z–cardiac-MLCK. Knockdown of z–cardiac-MLCK expression using morpholino antisense oligonucleotides resulted in dilated cardiac ventricles and immature sarcomere structures. These results suggest a significant role for cardiac-MLCK in cardiogenesis.

Authors

Osamu Seguchi, Seiji Takashima, Satoru Yamazaki, Masanori Asakura,, Yoshihiro Asano, Yasunori Shintani, Masakatsu Wakeno, Tetsuo Minamino, Hiroya Kondo, Hidehiko Furukawa, Kenji Nakamaru, Asuka Naito,, Tomoko Takahashi, Toshiaki Ohtsuka, Koichi Kawakami, Tadashi Isomura,, Soichiro Kitamura, Hitonobu Tomoike, Naoki Mochizuki, Masafumi Kitakaze

×

Figure 5

Cardiac-MLCK is highly conserved in several vertebrates, including zebra­fish.

Options: View larger image (or click on image) Download as PowerPoint
Cardiac-MLCK is highly conserved in several vertebrates, including zebra...
(A) Cardiac-MLCK is evolutionarily conserved in vertebrates, including humans (Hu), dogs (Ca), mice (Mm), chickens (Gg), and zebrafish (z), with the highest degree of homology in the C-terminal portion of the serine/threonine kinase domain. Black backgrounds indicate identical amino acids. Amino acids in the ATP-binding region are shown in blue; those in the kinase active site are shown in red. (B–I) Whole-mount in situ hybridizations depict the expression of z–cardiac-MLCK (z-cMK) in zebrafish embryos hybridized with z–cardiac-MLCK–specific antisense probe (B, C, F, and G) or z–cardiac-MLCK sense probe (D, E, H, and I). At 24 hpf, z–cardiac-MLCK was expressed in heart precursor cells (arrow). At 48 hpf, z–cardiac-MLCK was selectively expressed in the heart (asterisks denote atrium [a] and ventricle [v]).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts