Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Inhibition of TGF-β with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression
Swati Biswas, … , Michael L. Freeman, Carlos L. Arteaga
Swati Biswas, … , Michael L. Freeman, Carlos L. Arteaga
Published May 1, 2007
Citation Information: J Clin Invest. 2007;117(5):1305-1313. https://doi.org/10.1172/JCI30740.
View: Text | PDF | Corrigendum
Research Article

Inhibition of TGF-β with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression

  • Text
  • PDF
Abstract

We investigated whether TGF-β induced by anticancer therapies accelerates tumor progression. Using the MMTV/PyVmT transgenic model of metastatic breast cancer, we show that administration of ionizing radiation or doxorubicin caused increased circulating levels of TGF-β1 as well as increased circulating tumor cells and lung metastases. These effects were abrogated by administration of a neutralizing pan–TGF-β antibody. Circulating polyomavirus middle T antigen–expressing tumor cells did not grow ex vivo in the presence of the TGF-β antibody, suggesting autocrine TGF-β is a survival signal in these cells. Radiation failed to enhance lung metastases in mice bearing tumors that lack the type II TGF-β receptor, suggesting that the increase in metastases was due, at least in part, to a direct effect of TGF-β on the cancer cells. These data implicate TGF-β induced by anticancer therapy as a prometastatic signal in tumor cells and provide a rationale for the simultaneous use of these therapies in combination with TGF-β inhibitors.

Authors

Swati Biswas, Marta Guix, Cammie Rinehart, Teresa C. Dugger, Anna Chytil, Harold L. Moses, Michael L. Freeman, Carlos L. Arteaga

×

Figure 2

Radiation and chemotherapy increase circulating tumor cells and lung metastases.

Options: View larger image (or click on image) Download as PowerPoint
Radiation and chemotherapy increase circulating tumor cells and lung met...
(A) Female MMTV/PyVmT female mice were subjected to thoracic irradiation at 8 weeks of age. At 13 weeks, blood was collected via heart puncture at the termination of the experiment, and its cellular fraction evaluated for its ability to form colonies ex vivo as described in Methods. CTCs, circulating tumor cells. Representative images of colonies arising from single circulating tumor cells harvested from mouse blood are shown below. Transgene-positive colonies were assessed under a fluorescence microscope using a PyVmT antibody and a fluorescent secondary antibody. (B) In same mice as in A, surface lung metastases were counted at 13 weeks of age. Data in A and B are representative of 3 independent experiments with 4 mice per group. Representative H&E-stained sections of lung tissues from control and irradiated transgenic mice obtained 5 weeks after thoracic radiation are shown below. Black arrows indicate lung metastases. (C) Eight-week-old tumor-bearing MMTV/PyVmT transgenic mice were treated 3 times with vehicle or doxorubicin (5 mg/kg i.p.) at 21-day intervals. The experiment was terminated on week 15, and surface lung metastases were counted. Representative H&E-stained lung sections containing metastatic foci are shown at right. Original magnification, ×100. *P < 0.05, **P < 0.01 versus control.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts