Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Coordinated induction of plasminogen activator inhibitor-1 (PAI-1) and inhibition of plasminogen activator gene expression by hypoxia promotes pulmonary vascular fibrin deposition.
D J Pinsky, … , D J Loskutoff, D M Stern
D J Pinsky, … , D J Loskutoff, D M Stern
Published September 1, 1998
Citation Information: J Clin Invest. 1998;102(5):919-928. https://doi.org/10.1172/JCI307.
View: Text | PDF
Research Article

Coordinated induction of plasminogen activator inhibitor-1 (PAI-1) and inhibition of plasminogen activator gene expression by hypoxia promotes pulmonary vascular fibrin deposition.

  • Text
  • PDF
Abstract

Oxygen deprivation, as occurs during tissue ischemia, tips the natural anticoagulant/procoagulant balance of the endovascular wall to favor activation of coagulation. To investigate the effects of low ambient oxygen tension on the fibrinolytic system, mice were placed in a hypoxic environment with pO2 < 40 Torr. Plasma levels of plasminogen activator inhibitor-1 (PAI-1) antigen, detected by ELISA, increased in a time-dependent fashion after hypoxic exposure (increased as early as 4 h, P < 0.05 vs. normoxic controls), and were accompanied by an increase in plasma PAI-1 activity by 4 h (P < 0.05 vs. normoxic controls). Northern analysis of hypoxic murine lung demonstrated an increase in PAI-1 mRNA compared with normoxic controls; in contrast, transcripts for both tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) decreased under hypoxic conditions. Immunocolocalization studies identified macrophages as the predominant source of increased PAI-1 within hypoxic lung. Using a transformed murine macrophage line, striking induction of PAI-1 transcripts occurred under hypoxic conditions, due to both increased de novo transcription as well as increased mRNA stability. Consistent with an important role of the fibrinolytic system in hypoxia-induced fibrin accumulation, PAI-1 +/+ mice exposed to hypoxia exhibited increased pulmonary fibrin deposition based upon a fibrin immunoblot, intravascular fibrin identified by immunostaining, and increased accumulation of 125I-fibrinogen/fibrin in hypoxic tissue. In contrast, mice deficient for the PAI-1 gene (PAI-1 -/-) similarly exposed to hypoxic conditions did not display increased fibrin accumulation compared with normoxic PAI-1 +/+ controls. Furthermore, homozygous null uPA (uPA -/-) and tPA (tPA -/-) mice subjected to oxygen deprivation showed increased fibrin deposition compared with wild-type controls. These studies identify enhanced expression of PAI-1 as an important mechanism suppressing fibrinolysis under conditions of low oxygen tension, a response which may be further amplified by decreased expression of plasminogen activators. Taken together, these data provide insight into an important potential role of macrophages and the fibrinolytic system in ischemia-induced thrombosis.

Authors

D J Pinsky, H Liao, C A Lawson, S F Yan, J Chen, P Carmeliet, D J Loskutoff, D M Stern

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 367 26
PDF 53 30
Citation downloads 63 0
Totals 483 56
Total Views 539
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts