Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action
Yan Shu, … , Claire M. Brett, Kathleen M. Giacomini
Yan Shu, … , Claire M. Brett, Kathleen M. Giacomini
Published May 1, 2007
Citation Information: J Clin Invest. 2007;117(5):1422-1431. https://doi.org/10.1172/JCI30558.
View: Text | PDF
Research Article

Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action

  • Text
  • PDF
Abstract

Metformin is among the most widely prescribed drugs for the treatment of type 2 diabetes. Organic cation transporter 1 (OCT1) plays a role in the hepatic uptake of metformin, but its role in the therapeutic effects of the drug, which involve activation of AMP-activated protein kinase (AMPK), is unknown. Recent studies have shown that human OCT1 is highly polymorphic. We investigated whether OCT1 plays a role in the action of metformin and whether individuals with OCT1 polymorphisms have reduced response to the drug. In mouse hepatocytes, deletion of Oct1 resulted in a reduction in the effects of metformin on AMPK phosphorylation and gluconeogenesis. In Oct1-deficient mice the glucose-lowering effects of metformin were completely abolished. Seven nonsynonymous polymorphisms of OCT1 that exhibited reduced uptake of metformin were identified. Notably, OCT1-420del (allele frequency of about 20% in white Americans), previously shown to have normal activity for model substrates, had reduced activity for metformin. In clinical studies, the effects of metformin in glucose tolerance tests were significantly lower in individuals carrying reduced function polymorphisms of OCT1. Collectively, the data indicate that OCT1 is important for metformin therapeutic action and that genetic variation in OCT1 may contribute to variation in response to the drug.

Authors

Yan Shu, Steven A. Sheardown, Chaline Brown, Ryan P. Owen, Shuzhong Zhang, Richard A. Castro, Alexandra G. Ianculescu, Lin Yue, Joan C. Lo, Esteban G. Burchard, Claire M. Brett, Kathleen M. Giacomini

×

Figure 7

OCT1 genetic variants are associated with different accumulation rates and responses to metformin in stably transfected HEK293 cells.

Options: View larger image (or click on image) Download as PowerPoint
OCT1 genetic variants are associated with different accumulation rates a...
(A) Uptake of [14C]metformin by cell lines stably expressing human OCT1 and its variants. Cells expressing OCT1 and its variants were incubated with [14C]metformin (250 μM) for 10 minutes. Seven OCT1 variants exhibited reduced metformin uptake as compared with OCT1-reference. Data are expressed as mean ± SD for samples analyzed in quadruplicate. *P < 0.001 compared with the reference (2-tailed Student’s t test). (B) Metformin kinetics in cell lines expressing reduced function variants of OCT1. Four of the reduced function variants shown in A had enough activity to allow us to perform kinetic studies with metformin. The metformin uptake data at 8 different concentrations are plotted. The variants had significantly different Vmax values, with a similar Michaelis-Menten constant (Km) (Table 1). (C) OCT1-R61C tagged with GFP exhibits reduced membrane and enhanced cytoplasmic localization. GFP fusion constructs were generated for OCT1-reference and OCT1-R61C, which is common in human populations (13), and used to generate stable cell lines using Flp-In-293 cells. The plasma membrane was stained using Alexa Fluor 594 conjugated to wheat germ agglutinin, and cells were visualized by confocal microscopy. Original magnification, ×100. (D) Metformin-stimulated AMPK phosphorylation and ACC phosphorylation in cell lines stably overexpressing human OCT1 and its variants. The cells were treated with metformin (1 mM) for 1 hour, washed with blank medium, and then incubated for 5 hours before harvest. Immunoblots were performed against phospho-ACC (Ser79), phospho-AMPKα (Thr172), AMPKα, and β-actin.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts