Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ
John P. Iredale
John P. Iredale
View: Text | PDF
Review Series

Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ

  • Text
  • PDF
Abstract

Models of liver fibrosis, which include cell culture models, explanted and biopsied human material, and experimental animal models, have demonstrated that liver fibrosis is a highly dynamic example of solid organ wound healing. Recent work in human and animal models has shown that liver fibrosis is potentially reversible and, in specific circumstances, demonstrates resolution with a restoration of near normal architecture. This Review highlights the manner in which studies of models of liver fibrosis have contributed to the paradigm of dynamic wound healing in this solid organ.

Authors

John P. Iredale

×

Figure 4

Liver cirrhosis is an example of dynamic wound healing.

Options: View larger image (or click on image) Download as PowerPoint
Liver cirrhosis is an example of dynamic wound healing.
Damage to the no...
Damage to the normal liver (i) results in inflammation and activation of HSCs (ii; identified by immunohistochemistry, with staining for α-SMA [brown]) to secrete fibrillar collagens, culminating in the development of fibrosis (iii) and ultimately cirrhosis (iv). Withdrawal of the injurious agent can allow remodeling of the fibrillar matrix, leading to attenuated cirrhosis (v). Spontaneous resolution of fibrosis after removal of injury results in a return to near-normal architecture (vi). Whether complete resolution of cirrhosis can occur is currently unknown. Figure modified with permission from BMJ (3).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts