Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition
Debra F. Higgins, … , Masayuki Iwano, Volker H. Haase
Debra F. Higgins, … , Masayuki Iwano, Volker H. Haase
Published November 21, 2007
Citation Information: J Clin Invest. 2007;117(12):3810-3820. https://doi.org/10.1172/JCI30487.
View: Text | PDF
Research Article Nephrology

Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition

  • Text
  • PDF
Abstract

Hypoxia has been proposed as an important microenvironmental factor in the development of tissue fibrosis; however, the underlying mechanisms are not well defined. To examine the role of hypoxia-inducible factor–1 (HIF-1), a key mediator of cellular adaptation to hypoxia, in the development of fibrosis in mice, we inactivated Hif-1α in primary renal epithelial cells and in proximal tubules of kidneys subjected to unilateral ureteral obstruction (UUO) using Cre-loxP–mediated gene targeting. We found that Hif-1α enhanced epithelial-to-mesenchymal transition (EMT) in vitro and induced epithelial cell migration through upregulation of lysyl oxidase genes. Genetic ablation of epithelial Hif-1α inhibited the development of tubulointerstitial fibrosis in UUO kidneys, which was associated with decreased interstitial collagen deposition, decreased inflammatory cell infiltration, and a reduction in the number of fibroblast-specific protein–1–expressing (FSP-1–expressing) interstitial cells. Furthermore, we demonstrate that increased renal HIF-1α expression is associated with tubulointerstitial injury in patients with chronic kidney disease. Thus, we provide clinical and genetic evidence that activation of HIF-1 signaling in renal epithelial cells is associated with the development of chronic renal disease and may promote fibrogenesis by increasing expression of extracellular matrix–modifying factors and lysyl oxidase genes and by facilitating EMT.

Authors

Debra F. Higgins, Kuniko Kimura, Wanja M. Bernhardt, Nikita Shrimanker, Yasuhiro Akai, Bernd Hohenstein, Yoshihiko Saito, Randall S. Johnson, Matthias Kretzler, Clemens D. Cohen, Kai-Uwe Eckardt, Masayuki Iwano, Volker H. Haase

×

Figure 6

Deletion of Hif1a in PTECs attenuates renal fibrogenesis.

Options: View larger image (or click on image) Download as PowerPoint
Deletion of Hif1a in PTECs attenuates renal fibrogenesis.
              ...
Hif1a+/+ and Hif1a–/– kidneys were stained for collagen content (sirius red staining of collagen fibers shown in red; original magnification, ×200; n = 8 for mutant and n = 7 for control), macrophage marker F4/80 (original magnification, ×400; n = 3 in each group), and EMT marker FSP-1 (original magnification, ×400; n = 9 for mutant and n = 5 for control). For statistical analysis, sirius red–positive areas from 10 individual measurements per mouse were averaged across control and mutant cohorts. Morphometric analysis showed a reduction of all 3 stains in Hif1a mutant tissues. Scale bars represent mean values ± SEM; *P < 0.05, **P < 0.01.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts