Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition
Debra F. Higgins, … , Masayuki Iwano, Volker H. Haase
Debra F. Higgins, … , Masayuki Iwano, Volker H. Haase
Published November 21, 2007
Citation Information: J Clin Invest. 2007;117(12):3810-3820. https://doi.org/10.1172/JCI30487.
View: Text | PDF
Research Article Nephrology

Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition

  • Text
  • PDF
Abstract

Hypoxia has been proposed as an important microenvironmental factor in the development of tissue fibrosis; however, the underlying mechanisms are not well defined. To examine the role of hypoxia-inducible factor–1 (HIF-1), a key mediator of cellular adaptation to hypoxia, in the development of fibrosis in mice, we inactivated Hif-1α in primary renal epithelial cells and in proximal tubules of kidneys subjected to unilateral ureteral obstruction (UUO) using Cre-loxP–mediated gene targeting. We found that Hif-1α enhanced epithelial-to-mesenchymal transition (EMT) in vitro and induced epithelial cell migration through upregulation of lysyl oxidase genes. Genetic ablation of epithelial Hif-1α inhibited the development of tubulointerstitial fibrosis in UUO kidneys, which was associated with decreased interstitial collagen deposition, decreased inflammatory cell infiltration, and a reduction in the number of fibroblast-specific protein–1–expressing (FSP-1–expressing) interstitial cells. Furthermore, we demonstrate that increased renal HIF-1α expression is associated with tubulointerstitial injury in patients with chronic kidney disease. Thus, we provide clinical and genetic evidence that activation of HIF-1 signaling in renal epithelial cells is associated with the development of chronic renal disease and may promote fibrogenesis by increasing expression of extracellular matrix–modifying factors and lysyl oxidase genes and by facilitating EMT.

Authors

Debra F. Higgins, Kuniko Kimura, Wanja M. Bernhardt, Nikita Shrimanker, Yasuhiro Akai, Bernd Hohenstein, Yoshihiko Saito, Randall S. Johnson, Matthias Kretzler, Clemens D. Cohen, Kai-Uwe Eckardt, Masayuki Iwano, Volker H. Haase

×

Figure 4

UUO kidneys are hypoxic prior to development of tubulointerstitial fibrosis.

Options: View larger image (or click on image) Download as PowerPoint
UUO kidneys are hypoxic prior to development of tubulointerstitial fibro...
(A) Hypoxyprobe (Chemicon) was used to detect hypoxic regions in obstructed kidneys (UUO) 1 day and 8 days after ligation of the ureter (upper 4 panels). In contrast, hypoxyprobe staining was not detected in contralateral kidneys (CTL) 1 day after ligation but was apparent at low levels by day 8; original magnification ×200. Lower panels show cortical immunostaining for Hif-1α and Hif-2α in 8-day UUO and CTL kidneys; original magnification, ×400; arrows indicate cells with positive nuclear staining. (B) Quantitative real-time PCR analysis for Mdr-1, Pai-1, Lox, LoxL2, Collagen 1α1, and Collagen 18α1 in cortex of Hif1a+/+ CTL and UUO kidneys 8 days after ligation. Shown are relative expression values normalized to 18S rRNA. Data points represent individual kidneys; red bars represent mean values; n = 7; *P < 0.05, **P < 0.01, #P < 0.001.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts