Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition
Debra F. Higgins, … , Masayuki Iwano, Volker H. Haase
Debra F. Higgins, … , Masayuki Iwano, Volker H. Haase
Published November 21, 2007
Citation Information: J Clin Invest. 2007;117(12):3810-3820. https://doi.org/10.1172/JCI30487.
View: Text | PDF
Research Article Nephrology

Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition

  • Text
  • PDF
Abstract

Hypoxia has been proposed as an important microenvironmental factor in the development of tissue fibrosis; however, the underlying mechanisms are not well defined. To examine the role of hypoxia-inducible factor–1 (HIF-1), a key mediator of cellular adaptation to hypoxia, in the development of fibrosis in mice, we inactivated Hif-1α in primary renal epithelial cells and in proximal tubules of kidneys subjected to unilateral ureteral obstruction (UUO) using Cre-loxP–mediated gene targeting. We found that Hif-1α enhanced epithelial-to-mesenchymal transition (EMT) in vitro and induced epithelial cell migration through upregulation of lysyl oxidase genes. Genetic ablation of epithelial Hif-1α inhibited the development of tubulointerstitial fibrosis in UUO kidneys, which was associated with decreased interstitial collagen deposition, decreased inflammatory cell infiltration, and a reduction in the number of fibroblast-specific protein–1–expressing (FSP-1–expressing) interstitial cells. Furthermore, we demonstrate that increased renal HIF-1α expression is associated with tubulointerstitial injury in patients with chronic kidney disease. Thus, we provide clinical and genetic evidence that activation of HIF-1 signaling in renal epithelial cells is associated with the development of chronic renal disease and may promote fibrogenesis by increasing expression of extracellular matrix–modifying factors and lysyl oxidase genes and by facilitating EMT.

Authors

Debra F. Higgins, Kuniko Kimura, Wanja M. Bernhardt, Nikita Shrimanker, Yasuhiro Akai, Bernd Hohenstein, Yoshihiko Saito, Randall S. Johnson, Matthias Kretzler, Clemens D. Cohen, Kai-Uwe Eckardt, Masayuki Iwano, Volker H. Haase

×

Figure 3

Hif-1 enhances epithelial cell migration through induction of lysyl oxidases.

Options: View larger image (or click on image) Download as PowerPoint
Hif-1 enhances epithelial cell migration through induction of lysyl oxid...
(A) Hif1a+/+ or Hif1a–/– PTECs were cultured under normoxia or hypoxia for 6 days. Migration was analyzed by introducing a scratch into the epithelial layer and measuring scratch width, i.e., migration distance, at 0, 4, and 24 hours. Hypoxic Hif1a+/+ cells (top panel) displayed complete scratch closure after 24 hours, whereas the scratch was still apparent in hypoxic Hif1a–/– cells (lower panel); compare images labeled with #. Original magnification, ×100. Graph shows fold increase of hypoxic (Hx) Hif1a+/+ (black bars) and Hif1a–/– (gray bars) PTECs compared with their respective normoxic (Nx) migration. *P < 0.05. (B) Quantitative real-time PCR analysis of Pgk (4.2-fold induction at 12 hours), Vegf (13.8-fold increase at 12 hours), Mdr-1 (4.6-fold increase), Pai-1 (3.2-fold induction at 12 hours), Lox and LoxL2 (2.4- and 2.5-fold induction at 12 and 6 hours, respectively) mRNA in Hif1a+/+ (+/+) or Hif1a–/– (–/–) PTECs exposed to hypoxia for 0, 6, and 12 hours. Gene expression was normalized to 18S mRNA. (C) Hif1a+/+ PTECs were cultured under hypoxia for 6 days; 2 hours prior to wounding, lysyl oxidase inhibitors BAPN or BCS were added and cell migration monitored over 30 hours. Hx, untreated control cells (hypoxia without inhibitor). Original magnification, ×100.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts