Nonalcoholic fatty liver disease is strongly associated with hepatic insulin resistance and type 2 diabetes mellitus, but the molecular signals linking hepatic fat accumulation to hepatic insulin resistance are unknown. Three days of high-fat feeding in rats results specifically in hepatic steatosis and hepatic insulin resistance. In this setting, PKCε, but not other isoforms of PKC, is activated. To determine whether PKCε plays a causal role in the pathogenesis of hepatic insulin resistance, we treated rats with an antisense oligonucleotide against PKCε and subjected them to 3 days of high-fat feeding. Knocking down PKCε expression protects rats from fat-induced hepatic insulin resistance and reverses fat-induced defects in hepatic insulin signaling. Furthermore, we show that PKCε associates with the insulin receptor in vivo and impairs insulin receptor kinase activity both in vivo and in vitro. These data support the hypothesis that PKCε plays a critical role in mediating fat-induced hepatic insulin resistance and represents a novel therapeutic target for type 2 diabetes.
Varman T. Samuel, Zhen-Xiang Liu, Amy Wang, Sara A. Beddow, John G. Geisler, Mario Kahn, Xian-man Zhang, Brett P. Monia, Sanjay Bhanot, Gerald I. Shulman
Usage data is cumulative from December 2022 through December 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 1,172 | 86 |
80 | 39 | |
Figure | 146 | 0 |
Citation downloads | 34 | 0 |
Totals | 1,432 | 125 |
Total Views | 1,557 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.