Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease
Varman T. Samuel, … , Sanjay Bhanot, Gerald I. Shulman
Varman T. Samuel, … , Sanjay Bhanot, Gerald I. Shulman
Published March 1, 2007
Citation Information: J Clin Invest. 2007;117(3):739-745. https://doi.org/10.1172/JCI30400.
View: Text | PDF
Research Article Metabolism

Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease

  • Text
  • PDF
Abstract

Nonalcoholic fatty liver disease is strongly associated with hepatic insulin resistance and type 2 diabetes mellitus, but the molecular signals linking hepatic fat accumulation to hepatic insulin resistance are unknown. Three days of high-fat feeding in rats results specifically in hepatic steatosis and hepatic insulin resistance. In this setting, PKCε, but not other isoforms of PKC, is activated. To determine whether PKCε plays a causal role in the pathogenesis of hepatic insulin resistance, we treated rats with an antisense oligonucleotide against PKCε and subjected them to 3 days of high-fat feeding. Knocking down PKCε expression protects rats from fat-induced hepatic insulin resistance and reverses fat-induced defects in hepatic insulin signaling. Furthermore, we show that PKCε associates with the insulin receptor in vivo and impairs insulin receptor kinase activity both in vivo and in vitro. These data support the hypothesis that PKCε plays a critical role in mediating fat-induced hepatic insulin resistance and represents a novel therapeutic target for type 2 diabetes.

Authors

Varman T. Samuel, Zhen-Xiang Liu, Amy Wang, Sara A. Beddow, John G. Geisler, Mario Kahn, Xian-man Zhang, Brett P. Monia, Sanjay Bhanot, Gerald I. Shulman

×

Figure 4

PKCε ASO therapy improves hepatic insulin signaling and preserves insulin receptor kinase activity.

Options: View larger image (or click on image) Download as PowerPoint
PKCε ASO therapy improves hepatic insulin signaling and preserves insuli...
Insulin receptor (IR) tyrosine phosphorylation, IRS2 tyrosine phosphorylation, and AKT2 activity were assessed in the basal, fasted state, and after 20 minutes of hyperinsulinemic-euglycemic clamping. (A) Insulin receptor tyrosine phosphorylation. (B) IRS2 tyrosine phosphorylation. *P < 0.05 versus saline; †P < 0.05 versus control ASO. (C) AKT2 activity. †P < 0.05 versus control ASO. (D) Immunoprecipitation of the insulin receptor also precipitates PKCε and vice versa. (E) Incubation of active insulin receptor kinase with increasing molar ratios of PKCε results in a dose-dependent decrease in insulin receptor kinase activity. (F) Activity of lecithin-purified insulin receptor kinase from rats fed a normal low-fat diet and high-fat-fed (HFF) rats treated with saline, control ASO, and PKCε ASO. #P < 0.01 versus HFF/saline; ΧP < 0.001 versus HFF.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts