Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Ghrelin promotes thymopoiesis during aging
Vishwa Deep Dixit, … , Roy G. Smith, Dennis D. Taub
Vishwa Deep Dixit, … , Roy G. Smith, Dennis D. Taub
Published October 1, 2007
Citation Information: J Clin Invest. 2007;117(10):2778-2790. https://doi.org/10.1172/JCI30248.
View: Text | PDF
Research Article Immunology

Ghrelin promotes thymopoiesis during aging

  • Text
  • PDF
Abstract

The decline in adaptive immunity, T lymphocyte output, and the contraction of the TCR repertoire with age is largely attributable to thymic involution. The loss of thymic function with age may be due to diminished numbers of progenitors and the loss of critical cytokines and hormones from the thymic microenvironment. We have previously demonstrated that the orexigenic hormone ghrelin is expressed by immune cells and regulates T cell activation and inflammation. Here we report that ghrelin and ghrelin receptor expression within the thymus diminished with progressive aging. Infusion of ghrelin into 14-month-old mice significantly improved the age-associated changes in thymic architecture and thymocyte numbers, increasing recent thymic emigrants and improving TCR diversity of peripheral T cell subsets. Ghrelin-induced thymopoiesis during aging was associated with enhanced early thymocyte progenitors and bone marrow–derived Lin–Sca1+cKit+ cells, while ghrelin- and growth hormone secretagogue receptor–deficient (GHS-R–deficient) mice displayed enhanced age-associated thymic involution. Leptin also enhanced thymopoiesis in aged but not young mice. Our findings demonstrate what we believe to be a novel role for ghrelin and its receptor in thymic biology and suggest a possible therapeutic benefit of harnessing this pathway in the reconstitution of thymic function in immunocompromised subjects.

Authors

Vishwa Deep Dixit, Hyunwon Yang, Yuxiang Sun, Ashani T. Weeraratna, Yun-Hee Youm, Roy G. Smith, Dennis D. Taub

×

Figure 7

Leptin enhances thymopoiesis in aging mice.

Options: View larger image (or click on image) Download as PowerPoint
Leptin enhances thymopoiesis in aging mice.
(A) Similar to ghrelin, lept...
(A) Similar to ghrelin, leptin infusions in 14-month-old C57BL/6 mice significantly increased the total thymocyte number. (B) Leptin also enhanced the number of RTEs in aged (6- and 18-month-old) but not young (2-month-old) mice. Moreover, leptin but not ghrelin significantly increased the circulating levels of IGF-1 (C) and thymic KGF expression (D) in the thymus of aged mice. In contrast, ghrelin but not leptin significantly enhanced SCF (E) and inhibited TNF-α (F) mRNA expression in the aged thymus. (G) Furthermore, leptin infusion into 14-month-old BALB/c mice restored the age-related loss of cortical and medullary cellularity and the defined architecture of thymus and reduced the number of apoptotic thymocytes (H) compared with age-matched vehicle controls. Original magnification, ×10. (I) Similar to ghrelin infusion, exogenous leptin administration also increased the peripheral TCR diversity in aged (14-month-old) but not young (4-month-old) mice. *P < 0.01.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts