Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Ghrelin promotes thymopoiesis during aging
Vishwa Deep Dixit, Hyunwon Yang, Yuxiang Sun, Ashani T. Weeraratna, Yun-Hee Youm, Roy G. Smith, Dennis D. Taub
Vishwa Deep Dixit, Hyunwon Yang, Yuxiang Sun, Ashani T. Weeraratna, Yun-Hee Youm, Roy G. Smith, Dennis D. Taub
View: Text | PDF
Research Article Immunology

Ghrelin promotes thymopoiesis during aging

  • Text
  • PDF
Abstract

The decline in adaptive immunity, T lymphocyte output, and the contraction of the TCR repertoire with age is largely attributable to thymic involution. The loss of thymic function with age may be due to diminished numbers of progenitors and the loss of critical cytokines and hormones from the thymic microenvironment. We have previously demonstrated that the orexigenic hormone ghrelin is expressed by immune cells and regulates T cell activation and inflammation. Here we report that ghrelin and ghrelin receptor expression within the thymus diminished with progressive aging. Infusion of ghrelin into 14-month-old mice significantly improved the age-associated changes in thymic architecture and thymocyte numbers, increasing recent thymic emigrants and improving TCR diversity of peripheral T cell subsets. Ghrelin-induced thymopoiesis during aging was associated with enhanced early thymocyte progenitors and bone marrow–derived Lin–Sca1+cKit+ cells, while ghrelin- and growth hormone secretagogue receptor–deficient (GHS-R–deficient) mice displayed enhanced age-associated thymic involution. Leptin also enhanced thymopoiesis in aged but not young mice. Our findings demonstrate what we believe to be a novel role for ghrelin and its receptor in thymic biology and suggest a possible therapeutic benefit of harnessing this pathway in the reconstitution of thymic function in immunocompromised subjects.

Authors

Vishwa Deep Dixit, Hyunwon Yang, Yuxiang Sun, Ashani T. Weeraratna, Yun-Hee Youm, Roy G. Smith, Dennis D. Taub

×

Figure 2

Ghrelin expression declines with age in thymus.

Options: View larger image (or click on image) Download as PowerPoint
Ghrelin expression declines with age in thymus.
(A) Real-time PCR analys...
(A) Real-time PCR analysis of mice (n = 5–6) at various ages revealed an age-dependent reduction in ghrelin and GHS-R mRNA expression. Threshold cycle values from individual animals (n = 6) in each group were collapsed and normalized with GAPDH and expressed as average fold change in comparison with 2-month-old mice. (B) The GHS-R expression revealed by FAM-ghrelin binding displayed primarily medullary GHS-R expression, which appears to decrease with age. Medullary regions are outlined with white lines. (C) The total ghrelin protein expression was studied in thymus of 2, 4, 12, 18, and 24-month-old mice. Each section is representative of 4–5 thymi in each group. High ghrelin immunopositivity (brown staining) was observed in cortex as well as medulla of 2- to 4-month-old mice and declined in aging thymus. Original magnification, ×10 (left); ×40 (right). (D) Acylated ghrelin protein expression (arrowheads) also declines with age. Note the significant increase in large lipid vacuoles of adipocytes (A) in the septa (S) of thymus of 12-month-old mice. In contrast to 12-month-old mice, ghrelin expression was expressed in thymic cortex and the medulla in 4-month-old mice. Original magnification, ×10 (B and D).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts