Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI3008

Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display.

D Rajotte, W Arap, M Hagedorn, E Koivunen, R Pasqualini, and E Ruoslahti

Research Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.

Find articles by Rajotte, D. in: PubMed | Google Scholar

Research Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.

Find articles by Arap, W. in: PubMed | Google Scholar

Research Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.

Find articles by Hagedorn, M. in: PubMed | Google Scholar

Research Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.

Find articles by Koivunen, E. in: PubMed | Google Scholar

Research Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.

Find articles by Pasqualini, R. in: PubMed | Google Scholar

Research Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.

Find articles by Ruoslahti, E. in: PubMed | Google Scholar

Published July 15, 1998 - More info

Published in Volume 102, Issue 2 on July 15, 1998
J Clin Invest. 1998;102(2):430–437. https://doi.org/10.1172/JCI3008.
© 1998 The American Society for Clinical Investigation
Published July 15, 1998 - Version history
View PDF
Abstract

Vascular beds are known to differ in structure and metabolic function, but less is known about their molecular diversity. We have studied organ-specific molecular differences of the endothelium in various tissues by using in vivo screening of peptide libraries expressed on the surface of a bacteriophage. We report here that targeting of a large number of tissues with this method yielded, in each case, phage that homed selectively to the targeted organ. Different peptide motifs were recovered from each of these tissues. The enrichment in homing to the target organs relative to an unselected phage was 3-35-fold. Peptide sequences that conferred selective phage homing to the vasculature of lung, skin, and pancreas were characterized in detail. Immunohistochemistry showed that the phage localized in the blood vessels of their target organ. When tested, the phage homing was blocked in the presence of the cognate peptide. By targeting several tissues and by showing that specific homing could be achieved in each case, we provide evidence that organ- and tissue-specific molecular heterogeneity of the vasculature is a general, perhaps even universal, phenomenon. Our results also show that these molecular differences can serve as molecular addresses.

Version history
  • Version 1 (July 15, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts