Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase
Sang Won Suh, … , Pak H. Chan, Raymond A. Swanson
Sang Won Suh, … , Pak H. Chan, Raymond A. Swanson
Published April 2, 2007
Citation Information: J Clin Invest. 2007;117(4):910-918. https://doi.org/10.1172/JCI30077.
View: Text | PDF
Research Article

Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase

  • Text
  • PDF
Abstract

Hypoglycemic coma and brain injury are potential complications of insulin therapy. Certain neurons in the hippocampus and cerebral cortex are uniquely vulnerable to hypoglycemic cell death, and oxidative stress is a key event in this cell death process. Here we show that hypoglycemia-induced oxidative stress and neuronal death are attributable primarily to the activation of neuronal NADPH oxidase during glucose reperfusion. Superoxide production and neuronal death were blocked by the NADPH oxidase inhibitor apocynin in both cell culture and in vivo models of insulin-induced hypoglycemia. Superoxide production and neuronal death were also blocked in studies using mice or cultured neurons deficient in the p47phox subunit of NADPH oxidase. Chelation of zinc with calcium disodium EDTA blocked both the assembly of the neuronal NADPH oxidase complex and superoxide production. Inhibition of the hexose monophosphate shunt, which utilizes glucose to regenerate NADPH, also prevented superoxide formation and neuronal death, suggesting a mechanism linking glucose reperfusion to superoxide formation. Moreover, the degree of superoxide production and neuronal death increased with increasing glucose concentrations during the reperfusion period. These results suggest that high blood glucose concentrations following hypoglycemic coma can initiate neuronal death by a mechanism involving extracellular zinc release and activation of neuronal NADPH oxidase.

Authors

Sang Won Suh, Elizabeth T. Gum, Aaron M. Hamby, Pak H. Chan, Raymond A. Swanson

×

Figure 4

Zinc chelation prevents activation of neuronal NADPH oxidase.

Options: View larger image (or click on image) Download as PowerPoint
Zinc chelation prevents activation of neuronal NADPH oxidase.
(A) FluoZi...
(A) FluoZin-3 images of intracellular free zinc levels in cultured neurons after 3 hours of GD or 2 hours of GD and 1 hour of glucose replacement (GD/GR). Fluorescence induced by GR was attenuated in cultures treated with CaEDTA during the GD/GR incubations and eliminated by 10-minute incubation with N,N,N',N'-tetrakis(2-pyridyl-methyl)ethylenediamine (TPEN). n = 4. (B) Immunostaining for the p47phox and p67phox subunits of NADPH oxidase in cultured neurons. GD/GR-induced migration of these subunits to the neuronal plasma membrane was blocked by the zinc chelator CaEDTA but not by ZnEDTA used as a control. Scale bar: 10 μm. Representative of 3 cultures under each condition. (C) Vesicular zinc in the rat hippocampal hilus is imaged with TSQ fluorescence (white). The TSQ signal loss was greater after 30 minutes HG and 30 minutes GR (HG/GR) than after 60 minutes HG without GR. Fluorescence intensity is expressed as arbitrary units, with subtraction of background measured in the lateral ventricle (white square). Scale bar: 200 μm. Data are mean + SEM; n = 10; *P < 0.05; **P < 0.01. (D) TSQ fluorescence was increased in the postsynaptic pyramidal cells after HG/GR, and this increase was blocked by CaEDTA (n = 3). Scale bar: 100 μm. (E) CaEDTA reduces GR-induced superoxide production in the CA1 neurons. ZnEDTA was the control. Graph shows quantified CA1 neuronal Et fluorescence intensity in rats treated with intracerebroventricular saline, CaEDTA, or ZnEDTA. Scale bar: 100 μm. Data are mean + SEM; n = 3–5; *P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts