Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
T cell activation altersintestinal structure and function
Michael Field
Michael Field
Published October 2, 2006
Citation Information: J Clin Invest. 2006;116(10):2580-2582. https://doi.org/10.1172/JCI29985.
View: Text | PDF
Commentary

T cell activation altersintestinal structure and function

  • Text
  • PDF
Abstract

Treatment with anti-CD3 antibody (anti-CD3) causes transient diarrhea. In this issue of the JCI, Clayburgh et al. show that, in jejunum of mice injected with anti-CD3 or with TNF, fluid accumulation and changes in epithelial phenotype develop, the latter including an increase in the passive permeability to proteins, smaller solutes, and water and the endocytosis of the brush border Na+/H+ exchanger, thereby inhibiting Na+ absorption (a second cytokine, LIGHT, has the former effect, but not the latter) (see the related article beginning on page 2682). These phenotypic changes, by themselves, do not, however, explain increased fluid secretion. Since active anion secretion is not stimulated (in fact it is inhibited), a non–epithelial cell–mediated driving force must be present — most likely an increase in interstitial pressure due to an effect of TNF on capillary permeability, smooth muscle contractility, or both.

Authors

Michael Field

×

Full Text PDF | Download (302.00 KB)


Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts