The calcium-sensing receptor (CaSR) regulates PTH secretion to control the extracellular calcium concentration in adults, but its role in fetal life is unknown. We used CaSR gene knockout mice to investigate the role of the CaSR in regulating fetal calcium metabolism. The normal calcium concentration in fetal blood is raised above the maternal level, an increase that depends upon PTH-related peptide (PTHrP). Heterozygous (+/-) and homozygous (-/-) disruption of the CaSR caused a further increase in the fetal calcium level. This increase was modestly blunted by concomitant disruption of the PTHrP gene and completely reversed by disruption of the PTH/ PTHrP receptor gene. Serum levels of PTH and 1, 25-dihydroxyvitamin D were substantially increased above the normal low fetal levels by disruption of the CaSR. The free deoxypyridinoline level was increased in the amniotic fluid (urine) of CaSR-/- fetuses; this result suggests that fetal bone resorption is increased. Placental calcium transfer was reduced, and renal calcium excretion was increased, by disruption of the CaSR. These studies indicate that the CaSR normally suppresses PTH secretion in the presence of the normal raised (and PTHrP-dependent) fetal calcium level. Disruption of the CaSR causes fetal hyperparathyroidism and hypercalcemia, with additional effects on placental calcium transfer.
C S Kovacs, C L Ho-Pao, J L Hunzelman, B Lanske, J Fox, J G Seidman, C E Seidman, H M Kronenberg
Usage data is cumulative from April 2022 through April 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 254 | 32 |
48 | 13 | |
Citation downloads | 14 | 0 |
Totals | 316 | 45 |
Total Views | 361 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.