Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Embryonic endocrine pancreas and mature β cells acquire α and PP cell phenotypes upon Arx misexpression
Patrick Collombat, … , Palle Serup, Ahmed Mansouri
Patrick Collombat, … , Palle Serup, Ahmed Mansouri
Published April 2, 2007
Citation Information: J Clin Invest. 2007;117(4):961-970. https://doi.org/10.1172/JCI29115.
View: Text | PDF
Research Article

Embryonic endocrine pancreas and mature β cells acquire α and PP cell phenotypes upon Arx misexpression

  • Text
  • PDF
Abstract

Aristaless-related homeobox (Arx) was recently demonstrated to be involved in pancreatic α cell fate specification while simultaneously repressing the β and δ cell lineages. To establish whether Arx is not only necessary, but also sufficient to instruct the α cell fate in endocrine progenitors, we used a gain-of-function approach to generate mice conditionally misexpressing this factor. Mice with forced Arx expression in the embryonic pancreas or in developing islet cells developed a dramatic hyperglycemia and eventually died. Further analysis demonstrated a drastic loss of β and δ cells. Concurrently, a remarkable increase in the number of cells displaying α cell or, strikingly, pancreatic polypeptide (PP) cell features was observed. Notably, the ectopic expression of Arx induced in embryonic or adult β cells led to a loss of the β cell phenotype and a concomitant increase in a number of cells with α or PP cell characteristics. Combining quantitative real-time PCR and lineage-tracing experiments, we demonstrate that, in adult mice, the misexpression of Arx, rather than its overexpression, promotes a conversion of β cells into glucagon- or PP-producing cells in vivo. These results provide important insights into the complex mechanisms underlying proper pancreatic endocrine cell allocation and cell identity acquisition.

Authors

Patrick Collombat, Jacob Hecksher-Sørensen, Jens Krull, Joachim Berger, Dietmar Riedel, Pedro L. Herrera, Palle Serup, Ahmed Mansouri

×

Figure 1

Generation of animals conditionally misexpressing the Arx gene.

Options: View larger image (or click on image) Download as PowerPoint
Generation of animals conditionally misexpressing the Arx gene.
        ...
Schematic depicting the targeting vector before (top) and after (bottom) recombination of the 2 LoxP sites induced by the phage P1 Cre recombinase. β-Galactos., β-galactosidase. Inset: Visual examination of representative Cre-negative E10 embryo and adult pancreas under fluorescent light. Original magnification, ×40.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts