Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony
Mark A. Herman, Barbara B. Kahn
Mark A. Herman, Barbara B. Kahn
View: Text | PDF
Review Series

Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony

  • Text
  • PDF
Abstract

Recent data underscore the importance of intertissue communication in the maintenance of normal glucose homeostasis. Important signals are conveyed by hormones, cytokines, and fuel substrates and are sensed through a variety of cellular mechanisms. The ability of tissues to sense and adapt to changes in metabolic status and fuel availability is altered in insulin-resistant states including type 2 diabetes. Here we review the roles of glucose and its metabolites as signaling molecules and the diverse physiologic mechanisms for glucose sensing.

Authors

Mark A. Herman, Barbara B. Kahn

×

Figure 4

The adipocyte as a glucose sensor.

Options: View larger image (or click on image) Download as PowerPoint
The adipocyte as a glucose sensor.
Physiologic downregulation of GLUT4 i...
Physiologic downregulation of GLUT4 in the fasted state, pathologic downregulation in insulin-resistant states, or genetic knockout result in diminished glucose flux. The diminished glucose flux is sensed by the adipocyte, resulting in increased RBP4 secretion. Additionally, the diminished glucose flux may limit the ability to generate glycerol-3-phosphate via glycolysis. The adipocyte becomes reliant on glyceroneogenesis for glycerol-3-phosphate production, which may be limiting for fatty acid re-esterification and contribute to increased fatty acid release. G3P, glycerol-3-phosphate; PEP, phosphoenolpyruvate.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts