Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony
Mark A. Herman, Barbara B. Kahn
Mark A. Herman, Barbara B. Kahn
Published July 3, 2006
Citation Information: J Clin Invest. 2006;116(7):1767-1775. https://doi.org/10.1172/JCI29027.
View: Text | PDF
Review Series

Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony

  • Text
  • PDF
Abstract

Recent data underscore the importance of intertissue communication in the maintenance of normal glucose homeostasis. Important signals are conveyed by hormones, cytokines, and fuel substrates and are sensed through a variety of cellular mechanisms. The ability of tissues to sense and adapt to changes in metabolic status and fuel availability is altered in insulin-resistant states including type 2 diabetes. Here we review the roles of glucose and its metabolites as signaling molecules and the diverse physiologic mechanisms for glucose sensing.

Authors

Mark A. Herman, Barbara B. Kahn

×

Figure 1

Molecular glucose sensing.

Options: View larger image (or click on image) Download as PowerPoint
Molecular glucose sensing.
Upon entering cells of various types, numerou...
Upon entering cells of various types, numerous glucose-derived metabolites are sensed by a variety of cellular sensors, including glycogen synthase, ChREBP, AMPK, SIRT1–PGC-1α, carnitine palmitoyl transferase 1 (CPT1), and KATP channels. Via its diverse metabolites and their sensors, glucose entering the cell changes gene transcription, modulates signal transduction networks, and alters substrate flux through anabolic and catabolic pathways. ACC, acetyl-CoA carboxylase; FA, fatty acid; F6P, fructose-6-phosphate; GLUT, facilitative glucose transporter; GP, glycogen phosphorylase; G6P, glucose-6-phosphate; GS, glycogen synthase; HK/GK, hexokinase/glucokinase; mTOR, mammalian target of rapamycin; OXA, oxaloacetate; PC, pyruvate carboxylase; PDH, pyruvate dehydrogenase; PPP, pentose phosphate pathway.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts