Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Indoleamine 2,3-dioxygenase–expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection
Alexey Popov, … , Olaf Utermöhlen, Joachim L. Schultze
Alexey Popov, … , Olaf Utermöhlen, Joachim L. Schultze
Published December 1, 2006
Citation Information: J Clin Invest. 2006;116(12):3160-3170. https://doi.org/10.1172/JCI28996.
View: Text | PDF
Research Article Immunology

Indoleamine 2,3-dioxygenase–expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection

  • Text
  • PDF
Abstract

Control of pathogens by formation of abscesses and granulomas is a major strategy of the innate immune system, especially when effector mechanisms of adaptive immunity are insufficient. We show in human listeriosis that DCs expressing indoleamine 2,3-dioxygenase (IDO), together with macrophages, are major cellular components of suppurative granulomas in vivo. Induction of IDO by DCs is a cell-autonomous response to Listeria monocytogenes infection and was also observed in other granulomatous infections with intracellular bacteria, such as Bartonella henselae. Reporting on our use of the clinically applied anti–TNF-α antibody infliximab, we further demonstrate in vitro that IDO induction is TNF-α dependent. Repression of IDO therefore might result in exacerbation of granulomatous diseases observed during anti–TNF-α therapy. These findings place IDO+ DCs not only at the intersection of innate and adaptive immunity but also at the forefront of bacterial containment in granulomatous infections.

Authors

Alexey Popov, Zeinab Abdullah, Claudia Wickenhauser, Tomo Saric, Julia Driesen, Franz-Georg Hanisch, Eugen Domann, Emma Lloyd Raven, Oliver Dehus, Corinna Hermann, Daniela Eggle, Svenja Debey, Trinad Chakraborty, Martin Krönke, Olaf Utermöhlen, Joachim L. Schultze

×

Figure 1

Human DCs in L. monocytogenes infection.

Options: View larger image (or click on image) Download as PowerPoint
Human DCs in L. monocytogenes infection.
               
(A) Histomorpho...
(A) Histomorphology of lymph node sections from a patient with suppurative granulomatous listeriosis. H&E staining of a sample slide with prominent ring-wall formation of histiocytoid cells around suppurative granulomas in listeriosis. Magnification, ×100 and ×400 (H&E panels). Photographs of immunohistochemical staining with CD20, CD3, CD15, CD68, S100, CD11c, and IDO are shown. Magnification, ×250. One out of 3 comparable cases is depicted here. (B) Immunofluorescence of the same patient samples described above. S100 and CD68 were combined to distinguish between DCs and macrophages. S100 and CD11c were combined to determine a myeloid origin of the S100+ DCs. As a second marker for macrophages, double staining with CD68 and CD11c was performed. To assess expression of IDO by myeloid cells, DCs, and macrophages, analysis of IDO was combined with S100, CD11c, or CD68. One out of 3 cases is presented. Magnification, ×250. In each lower-left corner, an enlarged section of the photo is shown for more detail (magnification, ×2500). (C) Confocal microscopy (Olympus FluoView FV1000 Confocal Microscope) clearly confirms the colocalization of IDO with S100 and CD68. Magnification, ×2500.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts