Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation
Shao H. Yang, … , Stephen G. Young, Loren G. Fong
Shao H. Yang, … , Stephen G. Young, Loren G. Fong
Published August 1, 2006
Citation Information: J Clin Invest. 2006;116(8):2115-2121. https://doi.org/10.1172/JCI28968.
View: Text | PDF
Research Article Genetics

A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation

  • Text
  • PDF
Abstract

Hutchinson-Gilford progeria syndrome (HGPS) is caused by the production of a truncated prelamin A, called progerin, which is farnesylated at its carboxyl terminus. Progerin is targeted to the nuclear envelope and causes misshapen nuclei. Protein farnesyltransferase inhibitors (FTI) mislocalize progerin away from the nuclear envelope and reduce the frequency of misshapen nuclei. To determine whether an FTI would ameliorate disease phenotypes in vivo, we created gene-targeted mice with an HGPS mutation (LmnaHG/+) and then examined the effect of an FTI on disease phenotypes. LmnaHG/+ mice exhibited phenotypes similar to those in human HGPS patients, including retarded growth, reduced amounts of adipose tissue, micrognathia, osteoporosis, and osteolytic lesions in bone. Osteolytic lesions in the ribs led to spontaneous bone fractures. Treatment with an FTI increased adipose tissue mass, improved body weight curves, reduced the number of rib fractures, and improved bone mineralization and bone cortical thickness. These studies suggest that FTIs could be useful for treating humans with HGPS.

Authors

Shao H. Yang, Margarita Meta, Xin Qiao, David Frost, Joy Bauch, Catherine Coffinier, Sharmila Majumdar, Martin O. Bergo, Stephen G. Young, Loren G. Fong

×

Figure 5

An FTI (ABT-100) ameliorates disease phenotypes in LmnaHG/+ mice.

Options: View larger image (or click on image) Download as PowerPoint

                  An FTI (ABT-100) ameliorates disease phenotypes in Lm...
(A) FTI treatment in LmnaHG/+ and Lmna+/+ mice leads to the appearance of wild-type prelamin A (with antibodies against prelamin A and lamin A/C) and the appearance of nonfarnesylated HDJ-2 (with an antibody against HDJ-2; nonfarnesyl–HDJ-2) in liver extracts of FTI-treated mice. Red arrows indicate prelamin A, which migrates slightly above mature lamin A. (B and C) Effect of FTI treatment on body weight in female (B) and male (C) mice. Lmna+/+ (circles) and LmnaHG/+ (squares) mice were given the FTI (red symbols) or vehicle alone (open symbols), beginning at 4 weeks of age, and body weights were measured weekly. Body weight curves for the FTI-treated LmnaHG/+ mice were significantly improved, compared with those for vehicle-treated LmnaHG/+ mice (P < 0.0001 for both males and females). Male LmnaHG/+ mice on vehicle, n = 9; male LmnaHG/+ mice on FTI, n = 7; female LmnaHG/+mice on vehicle, n = 5; female LmnaHG/+ mice on FTI, n = 10; male Lmna+/+ mice on vehicle, n = 5; male Lmna+/+ mice on FTI, n = 5; female Lmna+/+ mice on vehicle, n = 9; female Lmna+/+ mice on FTI, n = 4. (D) Body fat weights in LmnaHG/+ mice on FTI or on the vehicle alone. The weight of body fat in LmnaHG/+ mice was significantly lower than in Lmna+/+ mice (P < 0.0001) and was significantly increased after FTI treatment (P = 0.002). (E) Representative H&E-stained sections of skin from 6-month-old Lmna+/+, vehicle-treated LmnaHG/+, and FTI-treated LmnaHG/+ mice; n = 4 mice in each group examined. The black line spans the layer of subcutaneous fat.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts