Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Oxidative stress mediates tau-induced neurodegeneration in Drosophila
Dora Dias-Santagata, … , Atanu Duttaroy, Mel B. Feany
Dora Dias-Santagata, … , Atanu Duttaroy, Mel B. Feany
Published January 2, 2007
Citation Information: J Clin Invest. 2007;117(1):236-245. https://doi.org/10.1172/JCI28769.
View: Text | PDF
Research Article Neuroscience

Oxidative stress mediates tau-induced neurodegeneration in Drosophila

  • Text
  • PDF
Abstract

Markers of oxidative damage have been detected in brain tissue from patients with Alzheimer disease (AD) and other neurodegenerative disorders. These findings implicate oxidative injury in the neurodegenerative process, but whether oxidative stress is a cause or a consequence of neurotoxicity remains unclear. We used a Drosophila model of human tauopathies to investigate the role of oxidative stress in neurodegeneration. Genetic and pharmacological manipulation of antioxidant defense mechanisms significantly modified neurodegeneration in our model, suggesting that oxidative stress plays a causal role in neurotoxicity. We demonstrate that the JNK signaling pathway is activated in our model, which is in agreement with previous findings in AD tissue. Furthermore, we show that the extent of JNK activation correlates with the degree of tau-induced neurodegeneration. Finally, our findings suggest that oxidative stress acts not to promote tau phosphorylation, but to enhance tau-induced cell cycle activation. In summary, our study identifies oxidative stress as a causal factor in tau-induced neurodegeneration in Drosophila.

Authors

Dora Dias-Santagata, Tudor A. Fulga, Atanu Duttaroy, Mel B. Feany

×

Figure 6

Tau-induced toxicity is accompanied by JNK pathway activation.

Options: View larger image (or click on image) Download as PowerPoint
Tau-induced toxicity is accompanied by JNK pathway activation.
(A) Quant...
(A) Quantification of TUNEL-positive neurons in the brains of 10-day-old flies expressing different tau isoforms revealed significantly higher neurotoxicity in tauR406W (***P < 0.001) and tauE14 (***P < 0.001) transgenic flies compared with controls and tauWT-expressing flies. Neurodegeneration was significantly higher in tauE14- than in tauR406W-expressing flies (P < 0.001). (B and C) The brains of 10-day-old control (B) and tauE14-expressing (C) flies were immunostained with a phosphorylated (active) JNK-specific antibody, which accumulated in areas of neurodegeneration (arrows). Scale bar: 20 μm. Genotypes (A–C) are as follows: control, elav-GAL4/+; tauWT, elav-GAL4/+, UAS-tauWT/+; tauR406W, elav-GAL4/+, UAS-tauR406W/+; and tauE14, elav-GAL4/+, UAS-tauE14(26)/+. (D and E) puc-lacZ gene expression revealed JNK pathway activation in tau transgenic flies. Brains of transgenic flies expressing the puc-lacZ transgene alone (D) or in combination with tauE14 (E) were immunostained for β-gal (arrows). Scale bar: 20 μm. (F) JNK pathway activation correlated with the extent of neurotoxicity induced by different tau transgenes. Quantification of β-gal–positive cells in 10-day-old puc-lacZ transgenic fly brains identified significant increases in JNK pathway activation in animals that also expressed tauR406W (**P < 0.01) or tauE14 (***P < 0.001) compared with tauWT-expressing flies or controls. (G–L) JNK pathway activation was detected in neurons. β-gal–positive cells (green fluorescence) often coexpressed the neuronal cell marker elav (red fluorescence) (G–I) and did not colocalize with repo-positive glia (red fluorescence) (J–L). Arrowheads mark the locations of β-gal–positive cells. Scale bars: 10 μm. Genotypes (D–L) are as follows: control, elav-GAL4/+, puc-lacZ/+; tauWT, elav-GAL4/+, UAS-tauWT/puc-lacZ; tauR406W, elav-GAL4/+, UAS-tauR406W/puc-lacZ; and tauE14, elav-GAL4/+, UAS-tauE14(26)/puc-lacZ.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts