Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Oxidative stress mediates tau-induced neurodegeneration in Drosophila
Dora Dias-Santagata, … , Atanu Duttaroy, Mel B. Feany
Dora Dias-Santagata, … , Atanu Duttaroy, Mel B. Feany
Published January 2, 2007
Citation Information: J Clin Invest. 2007;117(1):236-245. https://doi.org/10.1172/JCI28769.
View: Text | PDF
Research Article Neuroscience

Oxidative stress mediates tau-induced neurodegeneration in Drosophila

  • Text
  • PDF
Abstract

Markers of oxidative damage have been detected in brain tissue from patients with Alzheimer disease (AD) and other neurodegenerative disorders. These findings implicate oxidative injury in the neurodegenerative process, but whether oxidative stress is a cause or a consequence of neurotoxicity remains unclear. We used a Drosophila model of human tauopathies to investigate the role of oxidative stress in neurodegeneration. Genetic and pharmacological manipulation of antioxidant defense mechanisms significantly modified neurodegeneration in our model, suggesting that oxidative stress plays a causal role in neurotoxicity. We demonstrate that the JNK signaling pathway is activated in our model, which is in agreement with previous findings in AD tissue. Furthermore, we show that the extent of JNK activation correlates with the degree of tau-induced neurodegeneration. Finally, our findings suggest that oxidative stress acts not to promote tau phosphorylation, but to enhance tau-induced cell cycle activation. In summary, our study identifies oxidative stress as a causal factor in tau-induced neurodegeneration in Drosophila.

Authors

Dora Dias-Santagata, Tudor A. Fulga, Atanu Duttaroy, Mel B. Feany

×

Figure 2

Downregulation of Sod2 or of Trxr antioxidant activities increases neuronal cell death in a Drosophila tauopathy model.

Options: View larger image (or click on image) Download as PowerPoint
Downregulation of Sod2 or of Trxr antioxidant activities increases neuro...
(A–D) TUNEL assay in 10-day-old transgenic fly brains. Apoptotic cells, absent in control animals (A), were identified by TUNEL staining (arrows) in the brains of tauR406W transgenic flies (B) and were found to be more abundant in tauR406W flies heterozygous for TrxrΔ1 (C) and for Sod2n283 (D). Scale bar: 10 μm. (E) Neurodegeneration was significantly enhanced by partial inactivation of Trxr (***P < 0.001) and Sod2 (***P < 0.001) activities. The number of TUNEL-positive cells in the brains of 10-day-old tauR406W-expressing flies was compared with that in age-matched controls, in Sod2n283 and TrxrΔ1 heterozygous animals, and in tauR406W flies heterozygous for either Sod2n283 or TrxrΔ1. Data points represent the mean ± SEM. (F–K) Tau-induced toxicity was associated with neuronal cell death. TUNEL-positive cells (green fluorescence) were found to coexpress the neuronal cell marker elav (red fluorescence) (F–H) and did not colocalize with repo-positive glial cells (red fluorescence) (I–K). Arrowheads mark the location of TUNEL-positive cells. Scale bars: 5 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts