Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration
Foteini Mourkioti, … , Manolis Pasparakis, Nadia Rosenthal
Foteini Mourkioti, … , Manolis Pasparakis, Nadia Rosenthal
Published November 1, 2006
Citation Information: J Clin Invest. 2006;116(11):2945-2954. https://doi.org/10.1172/JCI28721.
View: Text | PDF | Erratum
Research Article Genetics

Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration

  • Text
  • PDF
Abstract

NF-κB is a major pleiotropic transcription factor modulating immune, inflammatory, cell survival, and proliferative responses, yet the relevance of NF-κB signaling in muscle physiology and disease is less well documented. Here we show that muscle-restricted NF-κB inhibition in mice, through targeted deletion of the activating kinase inhibitor of NF-κB kinase 2 (IKK2), shifted muscle fiber distribution and improved muscle force. In response to denervation, IKK2 depletion protected against atrophy, maintaining fiber type, size, and strength, increasing protein synthesis, and decreasing protein degradation. IKK2-depleted mice with a muscle-specific transgene expressing a local Igf-1 isoform (mIgf-1) showed enhanced protection against muscle atrophy. In response to muscle damage, IKK2 depletion facilitated skeletal muscle regeneration through enhanced satellite cell activation and reduced fibrosis. Our results establish IKK2/NF-κB signaling as an important modulator of muscle homeostasis and suggest a combined role for IKK inhibitors and growth factors in the therapy of muscle diseases.

Authors

Foteini Mourkioti, Paschalis Kratsios, Tom Luedde, Yao-Hua Song, Patrick Delafontaine, Raffaella Adami, Valeria Parente, Roberto Bottinelli, Manolis Pasparakis, Nadia Rosenthal

×

Figure 5

IKK2 muscle depletion protects fiber size and maintains fiber type.

Options: View larger image (or click on image) Download as PowerPoint
IKK2 muscle depletion protects fiber size and maintains fiber type.
(A a...
(A and B) Representative images of H&E-stained atrophied muscle 28 days after denervation. Note the absence of angular atrophic fibers and the nuclear accumulation in Ikk2mko denervated muscles (C) Histogram (frequency distribution of fiber CSA) shows the maintenance of fiber size in Ikk2mko gastrocnemius (white bars) compared with the control atrophied muscles (black bars). (D and E) Representative images of NADH staining that mark slow fibers with dark blue (red arrows) and intermediate fibers with light blue (purple arrows). (F) Fiber-type distribution in denervated soleus muscles: 37.5% decrease in slow fibers in control muscles, which become intermediate. Note the maintenance of fiber-type distribution in Ikk2mko denervated soleus.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts