Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Chronic activation of the prostaglandin receptor EP4 promotes hyaluronan-mediated neointimal formation in the ductus arteriosus
Utako Yokoyama, … , Yukihiko Sugimoto, Yoshihiro Ishikawa
Utako Yokoyama, … , Yukihiko Sugimoto, Yoshihiro Ishikawa
Published November 1, 2006
Citation Information: J Clin Invest. 2006;116(11):3026-3034. https://doi.org/10.1172/JCI28639.
View: Text | PDF
Research Article Cardiology

Chronic activation of the prostaglandin receptor EP4 promotes hyaluronan-mediated neointimal formation in the ductus arteriosus

  • Text
  • PDF
Abstract

PGE, a potent vasodilator, plays a primary role in maintaining the patency of the ductus arteriosus (DA). Genetic disruption of the PGE-specific receptor EP4, however, paradoxically results in fatal patent DA (PDA) in mice. Here we demonstrate that EP4-mediated signals promote DA closure by hyaluronic acid–mediated (HA-mediated) intimal cushion formation (ICF). Chronic EP4 stimulation by ONO-AE1-329, a selective EP4 agonist, significantly enhanced migration and HA production in rat DA smooth muscle cells. When HA production was inhibited, EP4-mediated migration was negated. Activation of EP4, adenylyl cyclase, and PKA all increased HA production and the level of HA synthase 2 (HAS2) transcripts. In immature rat DA explants, ICF was promoted by EP4/PKA stimuli. Furthermore, adenovirus-mediated Has2 gene transfer was sufficient to induce ICF in EP4-disrupted DA explants in which the intimal cushion had not formed. Accordingly, signals through EP4 have 2 essential roles in DA development, namely, vascular dilation and ICF. The latter would lead to luminal narrowing, helping adhesive occlusion and permanent closure of the vascular lumen. Our results imply that HA induction serves as an alternative therapeutic strategy for the treatment of PDA to the current one, i.e., inhibition of PGE signaling by cyclooxygenase inhibitors, which might delay PGE-mediated ICF in immature infants.

Authors

Utako Yokoyama, Susumu Minamisawa, Hong Quan, Shibnath Ghatak, Toru Akaike, Eri Segi-Nishida, Shiho Iwasaki, Mari Iwamoto, Suniti Misra, Kouichi Tamura, Hideaki Hori, Shumpei Yokota, Bryan P. Toole, Yukihiko Sugimoto, Yoshihiro Ishikawa

×
Options: View larger image (or click on image) Download as PowerPoint
Oligonucleotides for quantitative RT-PCR

Oligonucleotides for quantitative RT-PCR


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts