Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Nothing but skin and bone
F. Patrick Ross, Angela M. Christiano
F. Patrick Ross, Angela M. Christiano
Published May 1, 2006
Citation Information: J Clin Invest. 2006;116(5):1140-1149. https://doi.org/10.1172/JCI28605.
View: Text | PDF
Review Series

Nothing but skin and bone

  • Text
  • PDF
Abstract

Skin and bone — what comes to mind at hearing this phrase? While certainly a metaphor for disease, it also defines two very different tissues, one a flexible and contiguous outer covering, the other a morphologically diverse hard tissue distributed at over 200 sites in the body. As the accompanying series of Reviews highlights, these tissues are indeed diverse, but there are also surprising similarities. Skin is the interface between the internal organs and the environment, and as such plays a crucial role in the body’s defense mechanism. The skin and its many appendages are responsible for functions as diverse as epidermal barrier and defense, immune surveillance, UV protection, thermoregulation, sweating, lubrication, pigmentation, the sensations of pain and touch, and, importantly, the protection of various stem cell niches in the skin. Bone serves a number of purposes: it provides protection for vital organs, a lever for locomotion, a reservoir for calcium, and the site of adult hematopoiesis. The tissue is composed of osteoblasts, osteoclasts, and their individual precursors plus a complex mixture of mesenchymal, myeloid, and lymphoid cells in the marrow space. Finally, the endothelial microenvironment provides nutrition and is a conduit for the influx and emigration of cells that impact bone biology in several important ways. This Review series guides the reader through these various facets of 2 diverse, yet interdependent, tissues.

Authors

F. Patrick Ross, Angela M. Christiano

×

Figure 2

Cell-cell interactions in bone marrow.

Options: View larger image (or click on image) Download as PowerPoint
Cell-cell interactions in bone marrow.
HSCs, the precursors of osteoclas...
HSCs, the precursors of osteoclasts, reside in a stem cell niche provided by osteoblasts, which, together with stromal cells, derive from mesenchymal stem cells. Bone degradation (arrows) results in release of matrix-associated growth factors, which stimulate mesenchymal cells and thus bone formation. This “coupling” is an essential consequence of osteoclast activity (98). Additionally, matrix-derived factors stimulate cancer cell proliferation in the so-called “vicious cycle.” Finally, cancer cells release cytokines that target mesenchymal cells and thus activate bone resorption.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts