Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The stem cell niches in bone
Tong Yin, Linheng Li
Tong Yin, Linheng Li
Published May 1, 2006
Citation Information: J Clin Invest. 2006;116(5):1195-1201. https://doi.org/10.1172/JCI28568.
View: Text | PDF
Review Series

The stem cell niches in bone

  • Text
  • PDF
Abstract

The stem cell niche is composed of a specialized population of cells that plays an essential role in regulating adult stem cell self-renewal and differentiation. In adults, osteoblasts, responsible for osteogenesis, and hematopoietic cells, responsible for hematopoiesis, are closely associated in the bone marrow, suggesting a reciprocal relationship between the two. It was recently discovered that a subset of osteoblasts functions as a key component of the HSC niche (namely, the osteoblastic niche), controlling HSC numbers. HSCs interact not only with osteoblasts but also with other stromal cells, including endothelial cells. Sinusoidal endothelial cells in bone marrow have been revealed as an alternative HSC niche called the vascular niche. In this Review we compare the architecture of these 2 HSC niches in bone marrow. We also highlight the function of osteoblasts in maintaining a quiescent HSC microenvironment and the likely role of the vascular niche in regulating stem cell proliferation, differentiation, and mobilization. In addition, we focus on studies of animal models and in vitro assays that have provided direct insights into the actions of these osteoblastic and vascular niches, revealing central roles for numerous signaling and adhesion molecules. Many of the discoveries described herein may contribute to future clinical treatments for hematopoietic and bone-related disorders, including cancer.

Authors

Tong Yin, Linheng Li

×

Figure 2

The osteoblastic and vascular niches in bone.

Options: View larger image (or click on image) Download as PowerPoint
The osteoblastic and vascular niches in bone.
Under normal physiological...
Under normal physiological conditions, HSCs reside in either the osteoblastic or vascular niche. A portion of HSC daughter cells, in response to changes in levels of SDF-1 in the BM, will leave the niche and begin to mobilize and circulate. HSC homing is the reverse of mobilization, occurring in response to higher levels of SDF-1 in the BM. The osteoblastic niche may provide a quiescent microenvironment for HSC maintenance. In contrast, the vascular niche facilitates HSC transendothelial migration during mobilization or homing and may favor HSC proliferation and further differentiation. The process of recruiting HPCs to the vascular niche may depend on endothelium-derived FGF-4 and SDF-1. Higher FGF-4 and oxygen concentration gradients as the cells progress from the osteoblastic niche to the vascular niche might play a role in recruitment, proliferation, and differentiation of HSCs/HPCs. Under stress such as thrombocytopenia, SDF-1 and VEGF activate MMP-9, which converts membrane-associated Kit ligand into soluble Kit ligand (sKitL) and in turn promotes HSCs entry into the cell cycle, mobilization to the vascular niche, and differentiation (34).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts