Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Rosiglitazone promotes development of a novel adipocyte population from bone marrow–derived circulating progenitor cells
Joseph T. Crossno, … , Ronald G. Gill, Dwight J. Klemm
Joseph T. Crossno, … , Ronald G. Gill, Dwight J. Klemm
Published December 1, 2006
Citation Information: J Clin Invest. 2006;116(12):3220-3228. https://doi.org/10.1172/JCI28510.
View: Text | PDF
Research Article Metabolism

Rosiglitazone promotes development of a novel adipocyte population from bone marrow–derived circulating progenitor cells

  • Text
  • PDF
Abstract

Obesity and weight gain are characterized by increased adipose tissue mass due to an increase in the size of individual adipocytes and the generation of new adipocytes. New adipocytes are believed to arise from resident adipose tissue preadipocytes and mesenchymal progenitor cells. However, it is possible that progenitor cells from other tissues, in particular BM, could also contribute to development of new adipocytes in adipose tissue. We tested this hypothesis by transplanting whole BM cells from GFP-expressing transgenic mice into wild-type C57BL/6 mice and subjecting them to a high-fat diet or treatment with the thiazolidinedione (TZD) rosiglitazone (ROSI) for several weeks. Histological examination of adipose tissue or FACS of adipocytes revealed the presence of GFP+ multilocular (ML) adipocytes, whose number was significantly increased by ROSI treatment or high-fat feeding. These ML adipocytes expressed adiponectin, perilipin, fatty acid–binding protein (FABP), leptin, C/EBPα, and PPARγ but not uncoupling protein–1 (UCP-1), the CD45 hematopoietic lineage marker, or the CDllb monocyte marker. They also exhibited increased mitochondrial content. Appearance of GFP+ ML adipocytes was contemporaneous with an increase in circulating levels of mesenchymal and hematopoietic progenitor cells in ROSI-treated animals. We conclude that TZDs and high-fat feeding promote the trafficking of BM-derived circulating progenitor cells to adipose tissue and their differentiation into ML adipocytes.

Authors

Joseph T. Crossno, Susan M. Majka, Todd Grazia, Ronald G. Gill, Dwight J. Klemm

×

Figure 1

ROSI increases circulating levels of BM-derived mesenchymal and hematopoietic progenitor cells.

Options: View larger image (or click on image) Download as PowerPoint
ROSI increases circulating levels of BM-derived mesenchymal and hematopo...
Flow cytometric analysis of PBMCs isolated from GFP+ BMT mice fed a control (Cntrl) or ROSI-impregnated (ROSI) diet for 3 (top and bottom rows) or 7 (middle row) weeks. Cells were stained with APC-conjugated anti-CD45 antibodies and either PE-labeled anti–Sca-1 (top and middle rows) or anti–c-kit (bottom row) antibodies and analyzed by flow cytometry as described in Methods. Gates were set and data corrected for results obtained with unstained cells or cells stained with APC- or PE-conjugated isotype-matched control antibodies. Representative scattergrams for each analysis are shown. Blue ovals indicate cells staining weakly for Sca-1 that were not detected in samples from control animals. The average percentage (from 3 independent experiments) of total GFP+ cells is indicated in the top left, top right, and bottom right quadrants.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts