Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI2835

Stimulation of bile duct epithelial secretion by glybenclamide in normal and cholestatic rat liver.

M H Nathanson, A D Burgstahler, A Mennone, J A Dranoff, and L Rios-Velez

Liver Study Unit and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. michael.nathanson@yale.edu

Find articles by Nathanson, M. in: JCI | PubMed | Google Scholar

Liver Study Unit and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. michael.nathanson@yale.edu

Find articles by Burgstahler, A. in: JCI | PubMed | Google Scholar

Liver Study Unit and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. michael.nathanson@yale.edu

Find articles by Mennone, A. in: JCI | PubMed | Google Scholar

Liver Study Unit and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. michael.nathanson@yale.edu

Find articles by Dranoff, J. in: JCI | PubMed | Google Scholar

Liver Study Unit and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. michael.nathanson@yale.edu

Find articles by Rios-Velez, L. in: JCI | PubMed | Google Scholar

Published June 15, 1998 - More info

Published in Volume 101, Issue 12 on June 15, 1998
J Clin Invest. 1998;101(12):2665–2676. https://doi.org/10.1172/JCI2835.
© 1998 The American Society for Clinical Investigation
Published June 15, 1998 - Version history
View PDF
Abstract

Cholestasis is a cardinal complication of liver disease, but most treatments are merely supportive. Here we report that the sulfonylurea glybenclamide potently stimulates bile flow and bicarbonate excretion in the isolated perfused rat liver. Video-microscopic studies of isolated hepatocyte couplets and isolated bile duct segments show that this stimulatory effect occurs at the level of the bile duct epithelium, rather than through hepatocytes. Measurements of cAMP, cytosolic pH, and Ca2+ in isolated bile duct cells suggest that glybenclamide directly activates Na+-K+-2Cl- cotransport, rather than other transporters or conventional second-messenger systems that link to secretory pathways in these cells. Finally, studies in livers from rats with endotoxin- or estrogen-induced cholestasis show that glybenclamide retains its stimulatory effects on bile flow and bicarbonate excretion even under these conditions. These findings suggest that bile duct epithelia may represent an important new therapeutic target for treatment of cholestatic disorders.

Version history
  • Version 1 (June 15, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts