Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells
Jeffrey J. Ross, Zhigang Hong, Ben Willenbring, Lepeng Zeng, Brett Isenberg, Eu Han Lee, Morayma Reyes, Susan A. Keirstead, E. Kenneth Weir, Robert T. Tranquillo, Catherine M. Verfaillie
Jeffrey J. Ross, Zhigang Hong, Ben Willenbring, Lepeng Zeng, Brett Isenberg, Eu Han Lee, Morayma Reyes, Susan A. Keirstead, E. Kenneth Weir, Robert T. Tranquillo, Catherine M. Verfaillie
View: Text | PDF | Corrigendum
Research Article

Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells

  • Text
  • PDF
Abstract

Smooth muscle formation and function are critical in development and postnatal life. Hence, studies aimed at better understanding SMC differentiation are of great importance. Here, we report that multipotent adult progenitor cells (MAPCs) isolated from rat, murine, porcine, and human bone marrow demonstrate the potential to differentiate into cells with an SMC-like phenotype and function. TGF-β1 alone or combined with PDGF-BB in serum-free medium induces a temporally correct expression of transcripts and proteins consistent with smooth muscle development. Furthermore, SMCs derived from MAPCs (MAPC-SMCs) demonstrated functional L-type calcium channels. MAPC-SMCs entrapped in fibrin vascular molds became circumferentially aligned and generated force in response to KCl, the L-type channel opener FPL64176, or the SMC agonists 5-HT and ET-1, and exhibited complete relaxation in response to the Rho-kinase inhibitor Y-27632. Cyclic distention (5% circumferential strain) for 3 weeks increased responses by 2- to 3-fold, consistent with what occurred in neonatal SMCs. These results provide evidence that MAPC-SMCs are phenotypically and functionally similar to neonatal SMCs and that the in vitro MAPC-SMC differentiation system may be an ideal model for the study of SMC development. Moreover, MAPC-SMCs may lend themselves to tissue engineering applications.

Authors

Jeffrey J. Ross, Zhigang Hong, Ben Willenbring, Lepeng Zeng, Brett Isenberg, Eu Han Lee, Morayma Reyes, Susan A. Keirstead, E. Kenneth Weir, Robert T. Tranquillo, Catherine M. Verfaillie

×

Figure 3

SMC-specific proteins are expressed in SD-MAPCs differentiated with TGF-β1.

Options: View larger image (or click on image) Download as PowerPoint
SMC-specific proteins are expressed in SD-MAPCs differentiated with TGF-...
(A) Temporal characterization of SM22α and α-SMA expression on days 0, 2, 4, and 6 (magnification, ×40). SM22α was detected at low levels on day 0, which increased and localized to stress fibers as early as day 2. α-SMA expression was absent on day 0 and detected by day 4. (B) Colocalization of SM22α (green) and α-SMA (red) further demonstrates that expression of SM22α precedes that of α-SMA. (C) IgG control. (D) Expression of the SMC-specific proteins calponin, α-SMA, SM-MHC, and SM22α in SD-MAPC-SMCs passaged once in expansion medium. Representative example of more than 5 experiments; insets: magnificiation, ×10.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts