Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Absence of bacterially induced RELMβ reduces injury in the dextran sodium sulfate model of colitis
Laila D. McVay, Sue A. Keilbaugh, Tracie M.H. Wong, Sonja Kierstein, Marcus E. Shin, Michael Lehrke, Martina I. Lefterova, D. Edward Shifflett, Sean L. Barnes, Fabio Cominelli, Steven M. Cohn, Gail Hecht, Mitchell A. Lazar, Angela Haczku, Gary D. Wu
Laila D. McVay, Sue A. Keilbaugh, Tracie M.H. Wong, Sonja Kierstein, Marcus E. Shin, Michael Lehrke, Martina I. Lefterova, D. Edward Shifflett, Sean L. Barnes, Fabio Cominelli, Steven M. Cohn, Gail Hecht, Mitchell A. Lazar, Angela Haczku, Gary D. Wu
View: Text | PDF
Research Article Immunology

Absence of bacterially induced RELMβ reduces injury in the dextran sodium sulfate model of colitis

  • Text
  • PDF
Abstract

Although inflammatory bowel disease (IBD) is the result of a dysregulated immune response to commensal gut bacteria in genetically predisposed individuals, the mechanism(s) by which bacteria lead to the development of IBD are unknown. Interestingly, deletion of intestinal goblet cells protects against intestinal injury, suggesting that this epithelial cell lineage may produce molecules that exacerbate IBD. We previously reported that resistin-like molecule β (RELMβ; also known as FIZZ2) is an intestinal goblet cell–specific protein that is induced upon bacterial colonization whereupon it is expressed in the ileum and colon, regions of the gut most often involved in IBD. Herein, we show that disruption of this gene reduces the severity of colitis in the dextran sodium sulfate (DSS) model of murine colonic injury. Although RELMβ does not alter colonic epithelial proliferation or barrier function, we show that recombinant protein activates macrophages to produce TNF-α both in vitro and in vivo. RELMβ expression is also strongly induced in the terminal ileum of the SAMP1/Fc model of IBD. These results suggest a model whereby the loss of epithelial barrier function by DSS results in the activation of the innate mucosal response by RELMβ located in the lumen, supporting the hypothesis that this protein is a link among goblet cells, commensal bacteria, and the pathogenesis of IBD.

Authors

Laila D. McVay, Sue A. Keilbaugh, Tracie M.H. Wong, Sonja Kierstein, Marcus E. Shin, Michael Lehrke, Martina I. Lefterova, D. Edward Shifflett, Sean L. Barnes, Fabio Cominelli, Steven M. Cohn, Gail Hecht, Mitchell A. Lazar, Angela Haczku, Gary D. Wu

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 892 68
PDF 102 17
Figure 347 3
Table 71 0
Citation downloads 53 0
Totals 1,465 88
Total Views 1,553
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts