Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone.
R S Weinstein, … , A M Parfitt, S C Manolagas
R S Weinstein, … , A M Parfitt, S C Manolagas
Published July 15, 1998
Citation Information: J Clin Invest. 1998;102(2):274-282. https://doi.org/10.1172/JCI2799.
View: Text | PDF
Research Article

Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone.

  • Text
  • PDF
Abstract

Glucocorticoid-induced bone disease is characterized by decreased bone formation and in situ death of isolated segments of bone (osteonecrosis) suggesting that glucocorticoid excess, the third most common cause of osteoporosis, may affect the birth or death rate of bone cells, thus reducing their numbers. To test this hypothesis, we administered prednisolone to 7-mo-old mice for 27 d and found decreased bone density, serum osteocalcin, and cancellous bone area along with trabecular narrowing. These changes were accompanied by diminished bone formation and turnover, as determined by histomorphometric analysis of tetracycline-labeled vertebrae, and impaired osteoblastogenesis and osteoclastogenesis, as determined by ex vivo bone marrow cell cultures. In addition, the mice exhibited a threefold increase in osteoblast apoptosis in vertebrae and showed apoptosis in 28% of the osteocytes in metaphyseal cortical bone. As in mice, an increase in osteoblast and osteocyte apoptosis was documented in patients with glucocorticoid-induced osteoporosis. Decreased production of osteoclasts explains the reduction in bone turnover, whereas decreased production and apoptosis of osteoblasts would account for the decline in bone formation and trabecular width. Furthermore, accumulation of apoptotic osteocytes may contribute to osteonecrosis. These findings provide evidence that glucocorticoid-induced bone disease arises from changes in the numbers of bone cells.

Authors

R S Weinstein, R L Jilka, A M Parfitt, S C Manolagas

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 1,378 250
PDF 248 158
Citation downloads 146 0
Totals 1,772 408
Total Views 2,180
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts