Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
PGC-1 coactivators: inducible regulators of energy metabolism in health and disease
Brian N. Finck, Daniel P. Kelly
Brian N. Finck, Daniel P. Kelly
Published March 1, 2006
Citation Information: J Clin Invest. 2006;116(3):615-622. https://doi.org/10.1172/JCI27794.
View: Text | PDF
Review Series

PGC-1 coactivators: inducible regulators of energy metabolism in health and disease

  • Text
  • PDF
Abstract

Members of the PPARγ coactivator-1 (PGC-1) family of transcriptional coactivators serve as inducible coregulators of nuclear receptors in the control of cellular energy metabolic pathways. This Review focuses on the biologic and physiologic functions of the PGC-1 coactivators, with particular emphasis on striated muscle, liver, and other organ systems relevant to common diseases such as diabetes and heart failure.

Authors

Brian N. Finck, Daniel P. Kelly

×

Figure 2

The PGC-1 gene regulatory cascade.

Options: View larger image (or click on image) Download as PowerPoint
The PGC-1 gene regulatory cascade.
The schematic indicates the upstream ...
The schematic indicates the upstream signaling events and downstream gene regulatory actions of the inducible PGC-1 coactivators, using PGC-1α as the representative factor. The interaction of PGC-1α with its cognate transcription factor targets is shown linked to specific organ systems. For example, PGC-1α coactivates members of the PPAR nuclear receptor transcription factor family, to activate the expression of genes involved in mitochondrial fatty acid oxidation. The signaling pathways shown at the top of each organ system transduce extracellular physiologic and nutritional stimuli to the expression and/or activity of PGC-1α. LXR, liver X receptor; TAG, triacylglycerol; RXR, retinoid X receptor; mtDNA, mitochondrial DNA; OXPHOS, oxidative phosphorylation.

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts