Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cardiac autophagy is a maladaptive response to hemodynamic stress
Hongxin Zhu, … , Beverly A. Rothermel, Joseph A. Hill
Hongxin Zhu, … , Beverly A. Rothermel, Joseph A. Hill
Published July 2, 2007
Citation Information: J Clin Invest. 2007;117(7):1782-1793. https://doi.org/10.1172/JCI27523.
View: Text | PDF
Research Article

Cardiac autophagy is a maladaptive response to hemodynamic stress

  • Text
  • PDF
Abstract

Cardiac hypertrophy is a major predictor of heart failure and a prevalent disorder with high mortality. Little is known, however, regarding mechanisms governing the transition from stable cardiac hypertrophy to decompensated heart failure. Here, we tested the role of autophagy, a conserved pathway mediating bulk degradation of long-lived proteins and cellular organelles that can lead to cell death. To quantify autophagic activity, we engineered a line of “autophagy reporter” mice and confirmed that cardiomyocyte autophagy can be induced by short-term nutrient deprivation in vivo. Pressure overload induced by aortic banding induced heart failure and greatly increased cardiac autophagy. Load-induced autophagic activity peaked at 48 hours and remained significantly elevated for at least 3 weeks. In addition, autophagic activity was not spatially homogeneous but rather was seen at particularly high levels in basal septum. Heterozygous disruption of the gene coding for Beclin 1, a protein required for early autophagosome formation, decreased cardiomyocyte autophagy and diminished pathological remodeling induced by severe pressure stress. Conversely, Beclin 1 overexpression heightened autophagic activity and accentuated pathological remodeling. Taken together, these findings implicate autophagy in the pathogenesis of load-induced heart failure and suggest it may be a target for novel therapeutic intervention.

Authors

Hongxin Zhu, Paul Tannous, Janet L. Johnstone, Yongli Kong, John M. Shelton, James A. Richardson, Vien Le, Beth Levine, Beverly A. Rothermel, Joseph A. Hill

×

Figure 7

Pathological remodeling in pressure-stressed ventricle is diminished when autophagy is inhibited by beclin 1 haploinsufficiency.

Options: View larger image (or click on image) Download as PowerPoint
Pathological remodeling in pressure-stressed ventricle is diminished whe...
(A) Pressure overload–induced declines in systolic function, measured as %FS, are significantly decreased in beclin 1+/– mice. Systolic performance was measured at 3 weeks after banding. n = 4 WT sham; n = 4 ± sham; n = 6 WT sTAB; n = 6 ± sTAB. (B) Four-chamber sections of hearts treated as listed and harvested at 3 weeks. Scale bar: 2 mm. (C) HW/BW is increased similarly in banded beclin 1+/– mice compared with WT controls. n = 6 WT sham; n = 10 ± sham; n = 7 WT sTAB; n = 8 ± sTAB. ‡P < 0.05 versus ± sTAB; *P < 0.05 versus ± sham.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts