Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
All neuropathies great and small
Ellen B. Penny, Brian D. McCabe
Ellen B. Penny, Brian D. McCabe
Published November 1, 2005
Citation Information: J Clin Invest. 2005;115(11):2968-2971. https://doi.org/10.1172/JCI27003.
View: Text | PDF
Category: Commentary

All neuropathies great and small

  • Text
  • PDF
Abstract

Autosomal-dominant pure hereditary spastic paraplegia (AD-HSP) is characterized by the degeneration of long axons in corticospinal tracts and dorsal columns, resulting in spasticity and difficulty walking. Mutations in the SPG4 gene product spastin are the predominant genetic lesions associated with this inherited disease. In this issue, Orso et al. examine and reconcile existing Drosophila mutants of spastin and generate a new model for HSP by overexpression of a fly spastin transgene that carries a mutation prevalent in human AD-HSP. Expression of this mutant spastin protein produces pathology in flies reminiscent of the human disease, including adult locomotion defects, in addition to causing aberrant synaptic morphology and altered microtubule stability. Both movement and synaptic defects in fly mutants were ameliorated by treatment with the microtubule-modifying agent vinblastine. The results are consistent with disease-causing mutations in human spastin producing dominant-negative proteins and confirm the usefulness of Drosophila genetic techniques to understand HSP and other neurodegenerative diseases.

Authors

Ellen B. Penny, Brian D. McCabe

×

Full Text PDF | Download (331.57 KB)

Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts