Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney
Ming Lu, … , Gerhard H. Giebisch, Steven C. Hebert
Ming Lu, … , Gerhard H. Giebisch, Steven C. Hebert
Published March 1, 2006
Citation Information: J Clin Invest. 2006;116(3):797-807. https://doi.org/10.1172/JCI26961.
View: Text | PDF
Research Article Nephrology

CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney

  • Text
  • PDF
Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel plays vital roles in fluid transport in many epithelia. While CFTR is expressed along the entire nephron, its function in renal tubule epithelial cells remains unclear, as no specific renal phenotype has been identified in cystic fibrosis. CFTR has been proposed as a regulator of the 30 pS, ATP-sensitive renal K channel (Kir1.1, also known as renal outer medullar K [ROMK]) that is critical for K secretion by cells of the thick ascending limb (TAL) and distal nephron segments responsive to aldosterone. We report here that both ATP and glibenclamide sensitivities of the 30 pS K channel in TAL cells were absent in mice lacking CFTR and in mice homozygous for the ΔF508 mutation. Curcumin treatment in ΔF508-CFTR mice partially reversed the defect in ATP sensitivity. We demonstrate that the effect of CFTR on ATP sensitivity was abrogated by increasing PKA activity. We propose that CFTR regulates the renal K secretory channel by providing a PKA-regulated functional switch that determines the distribution of open and ATP-inhibited K channels in apical membranes. We discuss the potential physiological role of this functional switch in renal K handling during water diuresis and the relevance to renal K homeostasis in cystic fibrosis.

Authors

Ming Lu, Qiang Leng, Marie E. Egan, Michael J. Caplan, Emile L. Boulpaep, Gerhard H. Giebisch, Steven C. Hebert

×

Figure 11

Proposed model for CFTR-ROMK interactions.

Options: View larger image (or click on image) Download as PowerPoint
Proposed model for CFTR-ROMK interactions.
(A) Two populations of ROMK c...
(A) Two populations of ROMK channels coexist in apical membranes of TAL and principal cells. ROMK channels dissociated from CFTR are insensitive to cytosolic concentrations of ATP and therefore active. The association of ROMK and CFTR may be stabilized by NHERF2, which interacts with ezrin (E), an A kinase anchoring protein (AKAP). ROMK channels in the CFTR-ROMK channel complex is sensitive to normal millimolar ATP and therefore inactive. PKA phosphorylation shifts the channel distribution to the active mode. (B) Phosphorylation of CFTR is a functional switch modulating ROMK channel activity. Low cAMP in water diuresis reduces CFTR phosphorylation allowing CFTR-ROMK interaction and the resultant ATP-inhibition of ROMK averts excessive kaliuresis. High cAMP in antidiuresis phosphorylates CFTR preventing CFTR-ROMK interaction and the resultant lack of ATP-inhibition of ROMK assists kaliuresis. *PKA, active PKA.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts