Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The molecular mechanisms that control thrombopoiesis
Kenneth Kaushansky
Kenneth Kaushansky
Published December 1, 2005
Citation Information: J Clin Invest. 2005;115(12):3339-3347. https://doi.org/10.1172/JCI26674.
View: Text | PDF
Review Series

The molecular mechanisms that control thrombopoiesis

  • Text
  • PDF
Abstract

Our understanding of thrombopoiesis — the formation of blood platelets — has improved greatly in the last decade, with the cloning and characterization of thrombopoietin, the primary regulator of this process. Thrombopoietin affects nearly all aspects of platelet production, from self-renewal and expansion of HSCs, through stimulation of the proliferation of megakaryocyte progenitor cells, to support of the maturation of these cells into platelet-producing cells. The molecular and cellular mechanisms through which thrombopoietin affects platelet production provide new insights into the interplay between intrinsic and extrinsic influences on hematopoiesis and highlight new opportunities to translate basic biology into clinical advances.

Authors

Kenneth Kaushansky

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
The regulation of thrombopoietin levels. A steady-state amount of hepati...
The regulation of thrombopoietin levels. A steady-state amount of hepatic thrombopoietin (TPO) is regulated by platelet c-Mpl receptor–mediated uptake and destruction of the hormone. Hepatic production of the hormone is depicted. Upon binding to platelet c-Mpl receptors, the hormone is removed from the circulation and destroyed, which reduces blood levels. In the presence of inflammation, IL-6 is released from macrophages and, through TNF-α stimulation, from fibroblasts and circulates to the liver to enhance thrombopoietin production. Thrombocytopenia also leads to enhanced marrow stromal cell production of thrombopoietin, although the molecular mediator(s) of this effect is not yet completely understood.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts