Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mutual repression between steroid and xenobiotic receptor and NF-κB signaling pathways links xenobiotic metabolism and inflammation
Changcheng Zhou, Michelle M. Tabb, Edward L. Nelson, Felix Grün, Suman Verma, Asal Sadatrafiei, Min Lin, Shyamali Mallick, Barry M. Forman, Kenneth E. Thummel, Bruce Blumberg
Changcheng Zhou, Michelle M. Tabb, Edward L. Nelson, Felix Grün, Suman Verma, Asal Sadatrafiei, Min Lin, Shyamali Mallick, Barry M. Forman, Kenneth E. Thummel, Bruce Blumberg
View: Text | PDF
Research Article Immunology

Mutual repression between steroid and xenobiotic receptor and NF-κB signaling pathways links xenobiotic metabolism and inflammation

  • Text
  • PDF
Abstract

While it has long been known that inflammation and infection reduce expression of hepatic cytochrome P450 (CYP) genes involved in xenobiotic metabolism and that exposure to xenobiotic chemicals can impair immune function, the molecular mechanisms underlying both of these phenomena have remained largely unknown. Here we show that activation of the nuclear steroid and xenobiotic receptor (SXR) by commonly used drugs in humans inhibits the activity of NF-κB, a key regulator of inflammation and the immune response. NF-κB target genes are upregulated and small bowel inflammation is significantly increased in mice lacking the SXR ortholog pregnane X receptor (PXR), thereby demonstrating a direct link between SXR and drug-mediated antagonism of NF-κB. Interestingly, NF-κB activation reciprocally inhibits SXR and its target genes whereas inhibition of NF-κB enhances SXR activity. This SXR/PXR–NF-κB axis provides a molecular explanation for the suppression of hepatic CYP mRNAs by inflammatory stimuli as well as the immunosuppressant effects of xenobiotics and SXR-responsive drugs. This mechanistic relationship has clinical consequences for individuals undergoing therapeutic exposure to the wide variety of drugs that are also SXR agonists.

Authors

Changcheng Zhou, Michelle M. Tabb, Edward L. Nelson, Felix Grün, Suman Verma, Asal Sadatrafiei, Min Lin, Shyamali Mallick, Barry M. Forman, Kenneth E. Thummel, Bruce Blumberg

×

Figure 4

PCN inhibits TNF-α–induced NF-κB target gene expression in WT primary hepatocytes but not in PXR knockout primary hepatocytes.

Options: View larger image (or click on image) Download as PowerPoint
PCN inhibits TNF-α–induced NF-κB target gene expression in WT primary he...
(A) Mouse primary hepatocytes were isolated from WT or PXR knockout mice. Total RNAs were isolated and expression of NF-κB target genes was determined by QRT-PCR. (B and C) Mouse primary hepatocytes were pretreated for 18 hours with 10 μM PCN before the addition of 10 ng/ml mouse TNF-α and incubation for 3 hours. Total RNAs were isolated and expression of NF-κB target genes, IκBα (B), and TNF-α (C) was determined by QRT-PCR. n = 3. **P < 0.01; #P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts