Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mitochondria: pharmacological manipulation of cell death
Lisa Bouchier-Hayes, Lydia Lartigue, Donald D. Newmeyer
Lisa Bouchier-Hayes, Lydia Lartigue, Donald D. Newmeyer
View: Text | PDF
Review Series

Mitochondria: pharmacological manipulation of cell death

  • Text
  • PDF
Abstract

Cell death by apoptosis or necrosis is often important in the etiology and treatment of disease. Since mitochondria play important roles in cell death pathways, these organelles are potentially prime targets for therapeutic intervention. Here we discuss the mechanisms through which mitochondria participate in the cell death process and also survey some of the pharmacological approaches that target mitochondria in various ways.

Authors

Lisa Bouchier-Hayes, Lydia Lartigue, Donald D. Newmeyer

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Models of Bcl-2–family function at the mitochondrion during apoptosis. (...
Models of Bcl-2–family function at the mitochondrion during apoptosis. (A) The traditional simple rheostat model assumes that the antiapoptotic Bcl-2–family proteins antagonize the BH3-only proteins, in an equal and opposite manner. (B) Recent results suggest a more inclusive and detailed model, which we term the “switched rheostat.” Bax and Bak are the effectors of MOMP. Certain BH3-only proteins (“direct activators”) and p53 switch on Bax (and possibly Bak) directly and are antagonized by antiapoptotic Bcl-2–family proteins. Other BH3-only proteins (“derepressors”) do not activate Bax directly but act by antagonizing the antiapoptotic family members, thereby freeing the direct activators to trigger Bax/Bak–induced MOMP. The dashed lines indicate that the derepressor BH3-only proteins have differing specificities for antiapoptotic family members.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts