Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Pharmacological manipulation of Bcl-2 family members to control cell death
Anthony Letai
Anthony Letai
View: Text | PDF
Review Series

Pharmacological manipulation of Bcl-2 family members to control cell death

  • Text
  • PDF
Abstract

The commitment to programmed cell death involves complex interactions among pro- and antiapoptotic members of the Bcl-2 family of proteins. The physiological result of a decision by these proteins to undergo cell death is permeabilization of the mitochondrial outer membrane. Pharmacologic manipulation of proteins in this family appears both feasible and efficacious, whether the goal is decreased cell death, as in ischemia of the myocardium or brain, or increased cell death, as in cancer.

Authors

Anthony Letai

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Model for targeting cancer cells with sensitizer BH3 mimetics. (A) Mitoc...
Model for targeting cancer cells with sensitizer BH3 mimetics. (A) Mitochondrion from a normal cell has some Bax/Bak and Bcl-2. Bcl-2 is unoccupied; normal cell behavior is provoking no death signals. (B–D) Mitochondria from cancer cells have equal Bax/Bak and overexpress Bcl-2 in this model. Antiapoptotic reserve is defined as the number of unoccupied antiapoptotic Bcl-2 family member binding pockets per cell. Compared with normal mitochondria, those that overexpress Bcl-2 may provide decreased (B), equal (C), or increased (D) antiapoptotic reserve. Because of genomic instability, oncogene activation, cell cycle checkpoint violation, or perhaps cancer-specific response to cytotoxic chemotherapy, activator BH3 domains have been triggered and are sequestered by Bcl-2. After exposure to a sensitizer BH3 mimetic (a protein, peptide, or small molecule), activator BH3 domains are displaced from cancer cells, but not normal cells, activating Bax/Bak and allowing selective cancer cell killing, perhaps even as a single agent. It can be seen why sensitizer mimetics might offer a greater therapeutic window than an activator, as an activator molecule would provide selective killing only at low doses and only for cancer cells in condition 1 (Cancer 1). At higher doses, or if the cancer cells were in condition 2 or 3, there would be killing of normal and cancer cells. It is unclear whether activator- or sensitizer-type BH3-only family members predominate in the response to conventional chemotherapy agents, and it is likely that a mixture is present. These models also speculate why certain cancers, such as follicular lymphoma and chronic lymphocytic leukemia, despite expressing higher levels of Bcl-2, are more prone to apoptosis than normal cells after DNA-damaging chemotherapy.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts