Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Osteoblast-derived PTHrP is a physiological regulator of bone formation
T. John Martin
T. John Martin
Published September 1, 2005
Citation Information: J Clin Invest. 2005;115(9):2322-2324. https://doi.org/10.1172/JCI26239.
View: Text | PDF
Commentary

Osteoblast-derived PTHrP is a physiological regulator of bone formation

  • Text
  • PDF
Abstract

Parathyroid hormone–related protein (PTHrP) acts as a paracrine regulator in several tissues, and its physiological roles also extend to bone. In this issue of the JCI, Miao et al. demonstrate that osteoblast-specific ablation of Pthrp in mice results in osteoporosis and impaired bone formation both in vivo and ex vivo. These mice recapitulate the phenotype of mice with haploinsufficiency of Pthrp. The findings demonstrate that PTHrP plays a central role in the physiological regulation of bone formation, by promoting recruitment and survival of osteoblasts, and probably plays a role in the physiological regulation of bone resorption, by enhancing osteoclast formation. This has implications for both our understanding of the pathogenesis of osteoporosis and its treatment.

Authors

T. John Martin

×

Full Text PDF

Download PDF (303.47 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts