Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Aberrant maturation of mutant perforin underlies the clinical diversity of hemophagocytic lymphohistiocytosis
Kimberly A. Risma, Robert W. Frayer, Alexandra H. Filipovich, Janos Sumegi
Kimberly A. Risma, Robert W. Frayer, Alexandra H. Filipovich, Janos Sumegi
View: Text | PDF
Research Article Immunology

Aberrant maturation of mutant perforin underlies the clinical diversity of hemophagocytic lymphohistiocytosis

  • Text
  • PDF
Abstract

Missense mutations in perforin, a critical effector of lymphocyte cytotoxicity, lead to a spectrum of diseases, from familial hemophagocytic lymphohistiocytosis to an increased risk of tumorigenesis. Understanding of the impact of mutations has been limited by an inability to express human perforin in vitro. We have shown, for the first time to our knowledge, that recombinant human perforin is expressed, processed appropriately, and functional in rat basophilic leukemia (RBL) cells following retroviral transduction. Subsequently, we have addressed how perforin missense mutations lead to absent perforin detection and impaired cytotoxicity by analyzing 21 missense mutations by flow cytometry, immunohistochemistry, and immunoblot. We identified perforin missense mutations with partial maturation (class 1), no apparent proteolytic maturation (class 2), and no recognizable forms of perforin (class 3). Class 1 mutations exhibit lytic function when expressed in RBL cells and are associated with residual protein detection and variable cytotoxic function in affected individuals, suggesting that carriers of class 1 alleles may exhibit more subtle immune defects. By contrast, class 3 mutations cause severely diminished perforin detection and cytotoxicity, while class 2 mutations have an intermediate phenotype. Thus, the pathologic mechanism of perforin missense mutation likely involves a protein dosage effect of the mature protein.

Authors

Kimberly A. Risma, Robert W. Frayer, Alexandra H. Filipovich, Janos Sumegi

×

Figure 5

Impaired maturation of perforin can be assayed in RBL-1 and RBL-2H3 cells.

Options: View larger image (or click on image) Download as PowerPoint
Impaired maturation of perforin can be assayed in RBL-1 and RBL-2H3 cell...
(A) Western blot analysis of perforin with missense mutations reveals 3 abnormal banding patterns. RBL-1 cells expressing WT or mutant perforin protein were lysed in 2% NP-40, and lysates were run on SDS-PAGE under nonreducing conditions and probed with polyclonal antibody P1-8. PRF1-N252S exhibits the typical WT pattern with 2 faint precursor bands (p1 and p2) and a more intense mature band (m) with greater mobility. PRF1-C73R, PRF1-A91V, and PRF1-R225W exhibit abnormal banding patterns as explained in the text. Although the same banding patterns are noted in RBL-2H3 cells expressing WT or mutant perforin, detection required 100 μg of protein. Detection was by P1-8 antibody. (B) Cytotoxic activity of human perforin bearing amino acid transitions of N252S, A91V, R225W, and C73R, expressed in RBL-2H3 cells. Perforin function was tested by its ability to lyse rbcs as described in Figure 3.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts