Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Aberrant maturation of mutant perforin underlies the clinical diversity of hemophagocytic lymphohistiocytosis
Kimberly A. Risma, … , Alexandra H. Filipovich, Janos Sumegi
Kimberly A. Risma, … , Alexandra H. Filipovich, Janos Sumegi
Published January 4, 2006
Citation Information: J Clin Invest. 2006;116(1):182-192. https://doi.org/10.1172/JCI26217.
View: Text | PDF
Research Article Immunology

Aberrant maturation of mutant perforin underlies the clinical diversity of hemophagocytic lymphohistiocytosis

  • Text
  • PDF
Abstract

Missense mutations in perforin, a critical effector of lymphocyte cytotoxicity, lead to a spectrum of diseases, from familial hemophagocytic lymphohistiocytosis to an increased risk of tumorigenesis. Understanding of the impact of mutations has been limited by an inability to express human perforin in vitro. We have shown, for the first time to our knowledge, that recombinant human perforin is expressed, processed appropriately, and functional in rat basophilic leukemia (RBL) cells following retroviral transduction. Subsequently, we have addressed how perforin missense mutations lead to absent perforin detection and impaired cytotoxicity by analyzing 21 missense mutations by flow cytometry, immunohistochemistry, and immunoblot. We identified perforin missense mutations with partial maturation (class 1), no apparent proteolytic maturation (class 2), and no recognizable forms of perforin (class 3). Class 1 mutations exhibit lytic function when expressed in RBL cells and are associated with residual protein detection and variable cytotoxic function in affected individuals, suggesting that carriers of class 1 alleles may exhibit more subtle immune defects. By contrast, class 3 mutations cause severely diminished perforin detection and cytotoxicity, while class 2 mutations have an intermediate phenotype. Thus, the pathologic mechanism of perforin missense mutation likely involves a protein dosage effect of the mature protein.

Authors

Kimberly A. Risma, Robert W. Frayer, Alexandra H. Filipovich, Janos Sumegi

×

Figure 1

Expression of human perforin in RBL-1 and RBL-2H3 cells following retroviral transduction.

Options: View larger image (or click on image) Download as PowerPoint
Expression of human perforin in RBL-1 and RBL-2H3 cells following retrov...
(A) FC detection of WT human perforin and GFP in MIEG3-PRF1 virus–infected RBL-2H3 and RBL-1 cells 48 hours after infection. The sorted cells were a pool of 3 individual transfections. Perforin detection in NK92 cells is shown for comparison. The light green line represents the isotype control. (B) Detection of perforin in NK92 as well as in RBL-1 and RBL-2H3 transfectants by Western blotting following nonreducing SDS-PAGE. Precursor (p1 and p2) and mature (m) forms of perforin were visualized in all 3 cell lines by P1-8 antibody. Equivalent results were seen using H315 antibody. CMA was added to cultures overnight. Fifty micrograms of protein was loaded per lane. Since the endogenous perforin level in NK92 cells is lower than that in the transduced RBL-1 cells, a longer exposure is also shown. For transduced RBL-1 cells, a shorter exposure is also included to display the 2 precursor forms and 1 mature form of perforin. (C) Human perforin was detectable in the granular fraction of RBL-1 cells. RBL-1 cells were disrupted by nitrogen cavitation, and subcellular fractions were obtained after Percoll separation. Fractions 8–10, identified as granule fractions by the peak β-hexosaminidase activity, contained mature perforin (1.5 μg protein per lane). “C” indicates a cell lysate from RBL-1 cells expressing WT human perforin (4 μg protein).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts