Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Chronic morphine use does not induce peripheral tolerance in a rat model of inflammatory pain
Christian Zöllner, Shaaban A. Mousa, Oliver Fischer, Heike L. Rittner, Mohammed Shaqura, Alexander Brack, Mehdi Shakibaei, Waltraud Binder, Florian Urban, Christoph Stein, Michael Schäfer
Christian Zöllner, Shaaban A. Mousa, Oliver Fischer, Heike L. Rittner, Mohammed Shaqura, Alexander Brack, Mehdi Shakibaei, Waltraud Binder, Florian Urban, Christoph Stein, Michael Schäfer
View: Text | PDF
Research Article Neuroscience

Chronic morphine use does not induce peripheral tolerance in a rat model of inflammatory pain

  • Text
  • PDF
Abstract

Although opioids are highly effective analgesics, they are also known to induce cellular adaptations resulting in tolerance. Experimental studies are often performed in the absence of painful tissue injury, which precludes extrapolation to the clinical situation. Here we show that rats with chronic morphine treatment do not develop signs of tolerance at peripheral μ-opioid receptors (μ-receptors) in the presence of painful CFA-induced paw inflammation. In sensory neurons of these animals, internalization of μ-receptors was significantly increased and G protein coupling of μ-receptors as well as inhibition of cAMP accumulation were preserved. Opioid receptor trafficking and signaling were reduced, and tolerance was restored when endogenous opioid peptides in inflamed tissue were removed by antibodies or by depleting opioid-producing granulocytes, monocytes, and lymphocytes with cyclophosphamide (CTX). Our data indicate that the continuous availability of endogenous opioids in inflamed tissue increases recycling and preserves signaling of μ-receptors in sensory neurons, thereby counteracting the development of peripheral opioid tolerance. These findings infer that the use of peripherally acting opioids for the prolonged treatment of inflammatory pain associated with diseases such as chronic arthritis, inflammatory neuropathy, or cancer, is not necessarily accompanied by opioid tolerance.

Authors

Christian Zöllner, Shaaban A. Mousa, Oliver Fischer, Heike L. Rittner, Mohammed Shaqura, Alexander Brack, Mehdi Shakibaei, Waltraud Binder, Florian Urban, Christoph Stein, Michael Schäfer

×

Figure 4

Content of cAMP in DRG cells from animals without and with hindpaw CFA inflammation pretreated with s.c. morphine.

Options: View larger image (or click on image) Download as PowerPoint
Content of cAMP in DRG cells from animals without and with hindpaw CFA i...
(A–D) Basal cAMP was significantly lower in the absence of FSK in comparison with FSK treatment. Acute opioid application significantly decreased FSK-stimulated cAMP production in comparison with FSK treatment alone in DRG cells of animals with CFA (B) and CFA/morphine pretreatment (D) (ANOVA, *P < 0.01), but not in morphine–pretreated animals without CFA inflammation (C) (ANOVA, #P > 0.05). Values are expressed as percentages of FSK-stimulated (100%) cAMP levels.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts